test

Overview

Lidar-data-decode

In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any huge c++-based lib or ROS under Ubuntu

  1. in lidar data frame decode part:
  • Supports just LSC32(LeiShen Intelligent System) at the moment(you can also change the parameters to fit other lidars like velodyne, robosense...).
  • Takes a pcap file recorded by LSC32 lidar as input.
  • Extracts all Frames from the pcap file.
  • Saves data-frames: Data frames are saved as Pointcloud files (.pcd) and/or as Text files(.txt)
  • Can be parameterizes by yaml file.
  1. in dataset prepare part:
  • Files format conversion(txt to bin, if you want to make your datasets like KITTI format)
  • Files rename
  • Data frames visualization
Output

Below a sample out of 2 Points in a point cloud file

All Point Cloud Text-Files have follwoing fields: Time [musec], X [m], Y [m], Z [m], ID, Intensity, Latitude [Deg], Longitudes [Deg], Distance [m] 2795827803, 0.032293, 5.781942, -1.549291, 0, 6, 0.320, -15.000, 5.986

All Point Cloud PCD-Files have follwoing fields:

  1. X-Coordinate
  2. Y-Coordinate
  3. Z-Coordinate
  4. Intensity
Dependencies
  1. for lidar frame decode: Veloparser has follwoing package dependencies:
  • dpkt
  • numpy
  • tqdm
  1. for lidar frame Visualization:
  • mayavi
  • torch
  • opencv-python (using pip install opencv-python)
Run

Firstly, clone this project by: "git clone https://github.com/hitxing/Lidar-data-decode.git"

Because empty folders can not be upload on Github, after you clone this project, please create some empty folders as follows: 20210301215614471

a. for lidar frame decode:

  1. make sure test.pcap is in dir .\input\test.pcap
  2. check your parameters in params.yaml, then, run: "python main.py --path=.\input\test.pcap --out-dir=.\output --config=.\params.yaml"

after this operation, you can get your Text files/PCD files as follows:

​ 1)Text files in .\output\velodynevlp16\data_ascii:

1614600893415

​ 2)PCD files in .\output\velodynevlp16\data_pcl:

1614600836040

b. for Format conversion and rename:

If you want to make your datasets like KITTI format(bin files), you should convert your txt files to bin files at first, if you want to make a datset like nuscenes(pcd files), just go to next step and ignore that.

  1. put all your txt files to dir .\txt2bin\txt and run ''python txt2bin.py"

then, your txt files will convert to bin format and saved in dir ./txt2bin/bin like this:

1614602160574

  1. To make a test dataset like KITTI format, the next step is to rename your files like 000000.bin, for bin files(also fits for pcd files, change the parameters in file_rename.py, line 31), run "python file_rename.py", you can get your test dataset in the dir .\txt2bin\bin like this:

    1614602847542

c. for visualization your data frames(just for bin files now)

Please make sure that all of those packages are installed (pip or conda).

  1. copy your bin files in dir .\txt2bin\bin to your own dir(default is in .\visualization)

  2. run "python point_visul.py", the visual will like this:

    1614603301315

Note that lidar data in 000000.bin is not complete(after 000000.bin is complete), that why the visualization result is as above, you can delect this frame when you make your own test dataset .000001.bin will like this:

1614603496357

If you want to make your full dataset and labeling your data frame, I hope here will be helpful(https://github.com/Gltina/ACP-3Detection).

Note

Thanks ArashJavan a lot for provide this fantastic project! lidar data frame decode part in Lidar-data-decode is based on https://github.com/ArashJavan/veloparser which Supports Velodyne VLP16, At this moment, Lidar-data-decode supports LSC32-151A andLSC32-151C, actually, this project can support any lidar as long as you change the parameters follow the corresponding technical manual.

The reason why i wrote this project: a. I could not find any simple way without installing ROS (Robot operating software) or other huge c++-based lib that does 'just' extract the point clouds from pcap-file. b. Provide a reference to expand this project to fit your own lidar and make your own datasets

Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
A simple Speech Emotion Recognition (SER) API created using Flask and running in a Docker container.

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

2 Nov 11, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023