A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Overview

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks

This repository is the official PyTorch implementation of AAAI-21 paper Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks, which provides practical and effective tricks used in long-tailed image classification.

Trick gallery: trick_gallery.md

  • The tricks will be constantly updated. If you have or need any long-tail related trick newly proposed, please to open an issue or pull requests. Make sure to attach the results in corresponding md files if you pull a request with a new trick.
  • For any problem, such as bugs, feel free to open an issue.

Paper collection of long-tailed visual recognition

Awesome-of-Long-Tailed-Recognition

Long-Tailed-Classification-Leaderboard

Development log

Trick gallery and combinations

Brief inroduction

We divided the long-tail realted tricks into four families: re-weighting, re-sampling, mixup training, and two-stage training. For more details of the above four trick families, see the original paper.

Detailed information :

  • Trick gallery:

    Tricks, corresponding results, experimental settings, and running commands are listed in trick_gallery.md.
  • Trick combinations:

    Combinations of different tricks, corresponding results, experimental settings, and running commands are listed in trick_combination.md.
  • These tricks and trick combinations, which provide the corresponding results in this repo, have been reorgnized and tested. We are trying our best to deal with the rest, which will be constantly updated.

Main requirements

torch >= 1.4.0
torchvision >= 0.5.0
tensorboardX >= 2.1
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs
Python 3
apex
  • We provide the detailed requirements in requirements.txt. You can run pip install requirements.txt to create the same running environment as ours.
  • The apex is recommended to be installed for saving GPU memories:
pip install -U pip
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • If the apex is not installed, the Distributed training with DistributedDataParallel in our codes cannot be used.

Preparing the datasets

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), and iNaturalist 2018 (iNat18).

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513
Classes 50 50 100 100 1,000 8,142
Max images 5,000 5,000 500 500 1,280 1,000
Min images 50 100 5 10 5 2
Imbalance factor 100 50 100 50 256 500
-  `Max images` and `Min images` represents the number of training images in the largest and smallest classes, respectively.

-  CIFAR-10-LT-100 means the long-tailed CIFAR-10 dataset with the imbalance factor $\beta = 100$.

-  Imbalance factor is defined as $\beta = \frac{\text{Max images}}{\text{Min images}}$.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    There are two versions of CIFAR-LT.

    1. Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

      You can follow the steps below to get this version of CIFAR-LT:

      1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
      2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --out_path /downloaded/converted/
    1. Cao et al., NeurIPS 2019 followed Cui et al., CVPR 2019's method to generate the CIFAR-LT randomly. They modify the CIFAR datasets provided by PyTorch as this file shows.
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Download the train/test splitting files (ImageNet_LT_train.txt and ImageNet_LT_test.txt) in GoogleDrive or Baidu Netdisk (password: cj0g). Suppose you have downloaded them at path /downloaded/ImageNet-LT/.
    3. Run tools/convert_from_ImageNet.py, and you will get two jsons: ImageNet_LT_train.json and ImageNet_LT_val.json.
    # Convert from the original format of ImageNet-LT
    python tools/convert_from_ImageNet.py --input_path /downloaded/ImageNet-LT/ --image_path /downloaed/ImageNet/ --output_path ./
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Run tools/convert_from_iNat.py, and use the generated iNat18_train.json and iNat18_val.json to train.
    # Convert from the original format of iNaturalist
    # See tools/convert_from_iNat.py for more details of args 
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/train2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_train.json
    
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/val2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_val.json 

Usage

In this repo:

  • The results of CIFAR-LT (ResNet-32) and ImageNet-LT (ResNet-10), which need only one GPU to train, are gotten by DataParallel training with apex.

  • The results of iNat18 (ResNet-50), which need more than one GPU to train, are gotten by DistributedDataParallel training with apex.

  • If more than one GPU is used, DistributedDataParallel training is efficient than DataParallel training, especially when the CPU calculation forces are limited.

Training

Parallel training with DataParallel

1, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,4`.
bash data_parallel_train.sh configs/test/data_parallel.yaml GPUs

Distributed training with DistributedDataParallel

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,4`, then `NUM_GPUs` should be `3`.
bash distributed_data_parallel_train.sh configs/test/distributed_data_parallel.yaml NUM_GPUs GPUs

Validation

You can get the validation accuracy and the corresponding confusion matrix after running the following commands.

See main/valid.py for more details.

1, Change the TEST.MODEL_FILE in the yaml to your own path of the trained model firstly.
2, To do validation
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
python main/valid.py --cfg [Your yaml] --gpus GPUS

The comparison between the baseline results using our codes and the references [Cui, Kang]

  • We use Top-1 error rates as our evaluation metric.
  • From the results of two CIFAR-LT, we can see that the CIFAR-LT provided by Cao has much lower Top-1 error rates on CIFAR-10-LT, compared with the baseline results reported in his paper. So, in our experiments, we use the CIFAR-LT of Cui for fairness.
  • For the ImageNet-LT, we find that the color_jitter augmentation was not included in our experiments, which, however, is adopted by other methods. So, in this repo, we add the color_jitter augmentation on ImageNet-LT. The old baseline without color_jitter is 64.89, which is +1.15 points higher than the new baseline.
  • You can click the Baseline in the table below to see the experimental settings and corresponding running commands.
Datasets Cui et al., 2019 Cao et al., 2020 ImageNet-LT iNat18
CIFAR-10-LT CIFAR-100-LT CIFAR-10-LT CIFAR-100-LT
Imbalance factor Imbalance factor
100 50 100 50 100 50 100 50
Backbones ResNet-32 ResNet-32 ResNet-10 ResNet-50
Baselines using our codes
  1. CONFIG (from left to right):
    • configs/cui_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/cao_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/ImageNet_LT/imagenetlt_baseline.yaml
    • configs/iNat18/iNat18_baseline.yaml

  2. Running commands:
    • For CIFAR-LT and ImageNet-LT: bash data_parallel_train.sh CONFIG GPU
    • For iNat18: bash distributed_data_parallel_train.sh configs/iNat18/iNat18_baseline.yaml NUM_GPUs GPUs
30.12 24.81 61.76 57.65 28.05 23.55 62.27 56.22 63.74 40.55
Reference [Cui, Kang, Liu] 29.64 25.19 61.68 56.15 29.64 25.19 61.68 56.15 64.40 42.86

Citation

@inproceedings{zhang2020tricks,
  author    = {Yongshun Zhang and Xiu{-}Shen Wei and Boyan Zhou and Jianxin Wu},
  title     = {Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks},
  booktitle = {AAAI},
  year      = {2021},
}

Contacts

If you have any question about our work, please do not hesitate to contact us by emails provided in the paper.

Owner
Yong-Shun Zhang
Computer Vision
Yong-Shun Zhang
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022