Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

Overview

OANet implementation

Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by Jiahui Zhang, Dawei Sun, Zixin Luo, Anbang Yao, Lei Zhou, Tianwei Shen, Yurong Chen, Long Quan and Hongen Liao.

This paper focuses on establishing correspondences between two images. We introduce the DiffPool and DiffUnpool layers to capture the local context of unordered sparse correspondences in a learnable manner. By the collaborative use of DiffPool operator, we propose Order-Aware Filtering block which exploits the complex global context.

This repo contains the code and data for essential matrix estimation described in our ICCV paper. Besides, we also provide code for fundamental matrix estimation and the usage of side information (ratio test and mutual nearest neighbor check). Documents about this part will also be released soon.

Welcome bugs and issues!

If you find this project useful, please cite:

@article{zhang2019oanet,
  title={Learning Two-View Correspondences and Geometry Using Order-Aware Network},
  author={Zhang, Jiahui and Sun, Dawei and Luo, Zixin and Yao, Anbang and Zhou, Lei and Shen, Tianwei and Chen, Yurong and Quan, Long and Liao, Hongen},
  journal={International Conference on Computer Vision (ICCV)},
  year={2019}
}

Requirements

Please use Python 3.6, opencv-contrib-python (3.4.0.12) and Pytorch (>= 1.1.0). Other dependencies should be easily installed through pip or conda.

Example scripts

Run the demo

For a quick start, clone the repo and download the pretrained model.

git clone https://github.com/zjhthu/OANet.git 
cd OANet 
wget https://research.altizure.com/data/oanet_data/model_v2.tar.gz 
tar -xvf model_v2.tar.gz
cd model
wget https://research.altizure.com/data/oanet_data/sift-gl3d.tar.gz
tar -xvf sift-gl3d.tar.gz

Then run the fundamental matrix estimation demo.

cd ./demo && python demo.py

Generate training and testing data

First download YFCC100M dataset.

bash download_data.sh raw_data raw_data_yfcc.tar.gz 0 8
tar -xvf raw_data_yfcc.tar.gz

Download SUN3D testing (1.1G) and training (31G) dataset if you need.

bash download_data.sh raw_sun3d_test raw_sun3d_test.tar.gz 0 2
tar -xvf raw_sun3d_test.tar.gz
bash download_data.sh raw_sun3d_train raw_sun3d_train.tar.gz 0 63
tar -xvf raw_sun3d_train.tar.gz

Then generate matches for YFCC100M and SUN3D (only testing). Here we provide scripts for SIFT, this will take a while.

cd dump_match
python extract_feature.py
python yfcc.py
python extract_feature.py --input_path=../raw_data/sun3d_test
python sun3d.py

Generate SUN3D training data if you need by following the same procedure and uncommenting corresponding lines in sun3d.py.

Test pretrained model

We provide the model trained on YFCC100M and SUN3D described in our ICCV paper. Run the test script to get results in our paper.

cd ./core 
python main.py --run_mode=test --model_path=../model/yfcc/essential/sift-2000 --res_path=../model/yfcc/essential/sift-2000/ --use_ransac=False
python main.py --run_mode=test --data_te=../data_dump/sun3d-sift-2000-test.hdf5 --model_path=../model/sun3d/essential/sift-2000 --res_path=../model/sun3d/essential/sift-2000/ --use_ransac=False

Set --use_ransac=True to get results after RANSAC post-processing.

Train model on YFCC100M

After generating dataset for YFCC100M, run the tranining script.

cd ./core 
python main.py

You can train the fundamental estimation model by setting --use_fundamental=True --geo_loss_margin=0.03 and use side information by setting --use_ratio=2 --use_mutual=2

Train with your own local feature or data

The provided models are trained using SIFT. You had better retrain the model if you want to use OANet with your own local feature, such as ContextDesc, SuperPoint and etc.

You can follow the provided example scirpts in ./dump_match to generate dataset for your own local feature or data.

Tips for training OANet: if your dataset is small and overfitting is observed, you can consider replacing the OAFilter with OAFilterBottleneck.

Here we also provide a pretrained essential matrix estimation model using ContextDesc on YFCC100M.

cd model/
wget https://research.altizure.com/data/oanet_data/contextdesc-yfcc.tar.gz
tar -xvf contextdesc-yfcc.tar.gz

To test this model, you need to generate your own data using ContextDesc and then run python main.py --run_mode=test --data_te=YOUR/OWN/CONTEXTDESC/DATA --model_path=../model/yfcc/essential/contextdesc-2000 --res_path=XX --use_ratio=2.

Application on 3D reconstructions

sample

News

  1. Together with the local feature ContextDesc, we won both the stereo and muti-view tracks at the CVPR19 Image Matching Challenge (June. 2, 2019).

  2. We also rank the third place on the Visual Localization Benchmark using ContextDesc (Aug. 30, 2019).

Acknowledgement

This code is heavily borrowed from Learned-Correspondence. If you use the part of code related to data generation, testing and evaluation, you should cite this paper and follow its license.

@inproceedings{yi2018learning,
  title={Learning to Find Good Correspondences},
  author={Kwang Moo Yi* and Eduard Trulls* and Yuki Ono and Vincent Lepetit and Mathieu Salzmann and Pascal Fua},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2018}
}

Changelog

2019.09.29

  • Release code for data generation.

2019.10.04

  • Release model and data for SUN3D.

2019.12.09

  • Release a general purpose model trained on GL3D-v2, which has been tested on FM-Benchmark. This model achieves 66.1/92.3/84.0/47.0 on TUM/KITTI/T&T/CPC respectively using SIFT.
  • Release model trained using ContextDesc.
Owner
Jiahui Zhang
Tsinghua University
Jiahui Zhang
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Eleftheriadis Emmanouil 1 Oct 09, 2021
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022