Unsupervised Image to Image Translation with Generative Adversarial Networks

Overview

Unsupervised Image to Image Translation with Generative Adversarial Networks

Paper: Unsupervised Image to Image Translation with Generative Adversarial Networks

Requirements

  • TensorFlow 1.0.0
  • TensorLayer 1.3.11
  • CUDA 8
  • Ubuntu

Dataset

  • Before training the network, please prepare the data
  • CelebA download
  • Cropped SVHN download
  • MNIST download, and put to data/mnist_png

Usage

Step 1: Learning shared feature

python3 train.py --train_step="ac_gan" --retrain=1

Step 2: Learning image encoder

python3 train.py --train_step="imageEncoder" --retrain=1

Step 3: Translation

python3 translate_image.py
  • Samples of all steps will be saved to data/samples/

Network

Want to use different datasets?

  • in train.py and translate_image.py modify the name of dataset flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, obama_hillary]")
  • write your own data_loader in data_loader.py
You might also like...
The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

PyTorch implementations of Generative Adversarial Networks.
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Comments
  • Where can I get “obama_hillary” dataset

    Where can I get “obama_hillary” dataset

    I’m adaping your code

    Now I’m tring to replacement faces

    Is “obama_hillary” is custom dataset? Or public dataset

    Let me know where can I get “obama_hillary”

    Thanks.

    opened by dreamegg 0
  • What is the version of tensorflow?

    What is the version of tensorflow?

    Hi,donghao, I am running this project but I find there are so many errors at the beginning of my training, e.g. Traceback (most recent call last): File "train.py", line 362, in tf.app.run() File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "train.py", line 355, in main train_ac_gan() File "train.py", line 98, in train_ac_gan g_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d_logits_fake, tf.ones_like(d_logits_fake))) File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_impl.py", line 149, in sigmoid_cross_entropy_with_logits labels, logits) File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_ops.py", line 1512, in _ensure_xent_args "named arguments (labels=..., logits=..., ...)" % name) ValueError: Only call sigmoid_cross_entropy_with_logits with named arguments (labels=..., logits=..., ...)

    I guess these errors are due to differences between mine and yours,so could you please tell me what is your version of tensorflow?

    opened by zzw1123 3
  • Is the output image size of 256 x 256 an option – or is just 64 x 64 px possible?

    Is the output image size of 256 x 256 an option – or is just 64 x 64 px possible?

    Hey it's me again, browsing through your other repos i found this gem – seems fun! A few months ago i've tested another gender swap network written in TF, but the output resolution was hardcoded and i couldn't figure out how to change it (with my limited knowledge of TF). Your version again seems a lot easier to read – due to the usage of the Tensorlayer library?

    I'm using the celebA dataset and have left all thetf.flags by default. So the default image size is 64 x 64px but i've seen that you've also written quite a few lines in train.py and model.py for a 256 x 256px option.

    if FLAGS.image_size == 64:
        generator = model.generator
        discriminator = model.discriminator
        imageEncoder = model.imageEncoder
    # elif FLAGS.image_size == 256:
    #     generator = model.generator_256
    #     discriminator = model.discriminator_256
    #     imageEncoder = model.imageEncoder_256
    else:
        raise Exception("image_size should be 64 or 256")
    
    ################## 256x256x3
    def generator_256(inputs, is_train=True, reuse=False):
    (...)
    def discriminator_256(inputs, is_train=True, reuse=False):
    (...)
    

    Since the second if-statement (elif FLAGS.image_size == 256:) is commented out and never changes the default 64x64px model generator and encoder, setting flags.DEFINE_integer("image_size", ...) in train.py to 256 doesn't really change the size - is this correct?

    I've tried to uncomment the code and enable the elif line but then ran into this error: ValueError: Shapes (64, 64, 64, 256) and (64, 32, 32, 256) are not compatible

    You've added generator_256, discriminator_256 and imageEncoder_256 to model.py so i'm wondering if you just have just experimented with this image size and then discarded the option (and just left the 64x64 image_size option) or if i'm missing something here...

    There is also a commented out flag for output_size – but this variable doesn't show up anywhere else so i guess it's from a previous version of your code: # flags.DEFINE_integer("output_size", 64, "The size of the output images to produce [64]")

    And this one is also non-functional: # flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")


    I just wondered if it's possible to crank up the training and output resolution to 256x256px (and maybe finish the training process this year – when i get my 1080 Ti 😎).

    Will try to finish the 64x64px first and save the model-.npz files for later, but it would be interesting to know if the mentioned portions of your code are still functional.

    Thanks!

    opened by subzerofun 1
Releases(0.3)
Owner
Hao
Assistant Professor @ Peking University
Hao
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022