Unsupervised Image to Image Translation with Generative Adversarial Networks

Overview

Unsupervised Image to Image Translation with Generative Adversarial Networks

Paper: Unsupervised Image to Image Translation with Generative Adversarial Networks

Requirements

  • TensorFlow 1.0.0
  • TensorLayer 1.3.11
  • CUDA 8
  • Ubuntu

Dataset

  • Before training the network, please prepare the data
  • CelebA download
  • Cropped SVHN download
  • MNIST download, and put to data/mnist_png

Usage

Step 1: Learning shared feature

python3 train.py --train_step="ac_gan" --retrain=1

Step 2: Learning image encoder

python3 train.py --train_step="imageEncoder" --retrain=1

Step 3: Translation

python3 translate_image.py
  • Samples of all steps will be saved to data/samples/

Network

Want to use different datasets?

  • in train.py and translate_image.py modify the name of dataset flags.DEFINE_string("dataset", "celebA", "The name of dataset [celebA, obama_hillary]")
  • write your own data_loader in data_loader.py
You might also like...
The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

PyTorch implementations of Generative Adversarial Networks.
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Comments
  • Where can I get “obama_hillary” dataset

    Where can I get “obama_hillary” dataset

    I’m adaping your code

    Now I’m tring to replacement faces

    Is “obama_hillary” is custom dataset? Or public dataset

    Let me know where can I get “obama_hillary”

    Thanks.

    opened by dreamegg 0
  • What is the version of tensorflow?

    What is the version of tensorflow?

    Hi,donghao, I am running this project but I find there are so many errors at the beginning of my training, e.g. Traceback (most recent call last): File "train.py", line 362, in tf.app.run() File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 48, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "train.py", line 355, in main train_ac_gan() File "train.py", line 98, in train_ac_gan g_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d_logits_fake, tf.ones_like(d_logits_fake))) File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_impl.py", line 149, in sigmoid_cross_entropy_with_logits labels, logits) File "/home/zzw/Program/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_ops.py", line 1512, in _ensure_xent_args "named arguments (labels=..., logits=..., ...)" % name) ValueError: Only call sigmoid_cross_entropy_with_logits with named arguments (labels=..., logits=..., ...)

    I guess these errors are due to differences between mine and yours,so could you please tell me what is your version of tensorflow?

    opened by zzw1123 3
  • Is the output image size of 256 x 256 an option – or is just 64 x 64 px possible?

    Is the output image size of 256 x 256 an option – or is just 64 x 64 px possible?

    Hey it's me again, browsing through your other repos i found this gem – seems fun! A few months ago i've tested another gender swap network written in TF, but the output resolution was hardcoded and i couldn't figure out how to change it (with my limited knowledge of TF). Your version again seems a lot easier to read – due to the usage of the Tensorlayer library?

    I'm using the celebA dataset and have left all thetf.flags by default. So the default image size is 64 x 64px but i've seen that you've also written quite a few lines in train.py and model.py for a 256 x 256px option.

    if FLAGS.image_size == 64:
        generator = model.generator
        discriminator = model.discriminator
        imageEncoder = model.imageEncoder
    # elif FLAGS.image_size == 256:
    #     generator = model.generator_256
    #     discriminator = model.discriminator_256
    #     imageEncoder = model.imageEncoder_256
    else:
        raise Exception("image_size should be 64 or 256")
    
    ################## 256x256x3
    def generator_256(inputs, is_train=True, reuse=False):
    (...)
    def discriminator_256(inputs, is_train=True, reuse=False):
    (...)
    

    Since the second if-statement (elif FLAGS.image_size == 256:) is commented out and never changes the default 64x64px model generator and encoder, setting flags.DEFINE_integer("image_size", ...) in train.py to 256 doesn't really change the size - is this correct?

    I've tried to uncomment the code and enable the elif line but then ran into this error: ValueError: Shapes (64, 64, 64, 256) and (64, 32, 32, 256) are not compatible

    You've added generator_256, discriminator_256 and imageEncoder_256 to model.py so i'm wondering if you just have just experimented with this image size and then discarded the option (and just left the 64x64 image_size option) or if i'm missing something here...

    There is also a commented out flag for output_size – but this variable doesn't show up anywhere else so i guess it's from a previous version of your code: # flags.DEFINE_integer("output_size", 64, "The size of the output images to produce [64]")

    And this one is also non-functional: # flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")


    I just wondered if it's possible to crank up the training and output resolution to 256x256px (and maybe finish the training process this year – when i get my 1080 Ti 😎).

    Will try to finish the 64x64px first and save the model-.npz files for later, but it would be interesting to know if the mentioned portions of your code are still functional.

    Thanks!

    opened by subzerofun 1
Releases(0.3)
Owner
Hao
Assistant Professor @ Peking University
Hao
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023