Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

Overview

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation:


Work In Progress, Results can't be replicated yet with the models here

  • UPDATE: April 28th: Skip_Connection added thanks to the reviewers, check model model-tiramasu-67-func-api.py

feel free to open issues for suggestions:)

  • Keras2 + TF used for the recent updates, which might cause with some confilict from previous version I had in here

What is The One Hundred Layers Tiramisu?

  • A state of art (as in Jan 2017) Semantic Pixel-wise Image Segmentation model that consists of a fully deep convolutional blocks with downsampling, skip-layer then to Upsampling architecture.
  • An extension of DenseNets to deal with the problem of semantic segmentation.

Fully Convolutional DensNet = (Dense Blocks + Transition Down Blocks) + (Bottleneck Blocks) + (Dense Blocks + Transition Up Blocks) + Pixel-Wise Classification layer

model

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio) arXiv:1611.09326 cs.CV

Requirements:


  • Keras==2.0.2
  • tensorflow-gpu==1.0.1
  • or just go ahead and do: pip install -r requirements.txt

Model Strucure:


  • DenseBlock: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout

  • TransitionDown: BatchNormalization + Activation [ Relu ] + Convolution2D + Dropout + MaxPooling2D

  • TransitionUp: Deconvolution2D (Convolutions Transposed)

model-blocks


Model Params:


  • RMSprop is used with Learnining Rete of 0.001 and weight decay 0.995
    • However, using those got me nowhere, I switched to SGD and started tweaking the LR + Decay myself.
  • There are no details given about BatchNorm params, again I have gone with what the Original DenseNet paper had suggested.
  • Things to keep in mind perhaps:
    • the weight inti: he_uniform (maybe change it around?)
    • the regualzrazation too agressive?

Repo (explanation):


  • Download the CamVid Dataset as explained below:
    • Use the data_loader.py to crop images to 224, 224 as in the paper implementation.
  • run model-tiramasu-67-func-api.py or python model-tirmasu-56.py for now to generate each models file.
  • run python train-tirmasu.py to start training:
    • Saves best checkpoints for the model and data_loader included for the CamVidDataset
  • helper.py contains two methods normalized and one_hot_it, currently for the CamVid Task

Dataset:


  1. In a different directory run this to download the dataset from original Implementation.

    • git clone [email protected]:alexgkendall/SegNet-Tutorial.git
    • copy the /CamVid to here, or change the DataPath in data_loader.py to the above directory
  2. The run python data_loader.py to generate these two files:

    • /data/train_data.npz/ and /data/train_label.npz
    • This will make it easy to process the model over and over, rather than waiting the data to be loaded into memory.

  • Experiments:
Models Acc Loss Notes
FC-DenseNet 67 model-results model-results 150 Epochs, RMSPROP

To Do:


[x] FC-DenseNet 103
[x] FC-DenseNet 56
[x] FC-DenseNet 67
[ ] Replicate Test Accuracy CamVid Task
[ ] Replicate Test Accuracy GaTech Dataset Task
[ ] Requirements
  • Original Results Table:

    model-results

Owner
Yad Konrad
indie researcher in areas of Machine Learning, Linguistics & Program Synthesis.
Yad Konrad
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023