The repository offers the official implementation of our paper in PyTorch.

Related tags

Deep LearningCIT
Overview

Cloth Interactive Transformer (CIT)

Cloth Interactive Transformer for Virtual Try-On
Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Philip H.S. Torr5, Nicu Sebe16.
1University of Trento, Italy, 2Peng Cheng Laboratory, China, 3Peking University Shenzhen Graduate School, China,
4Inception Institute of AI, UAE, 5University of Oxford, UK, 6Huawei Research Ireland, Ireland.

The repository offers the official implementation of our paper in PyTorch. The code and pre-trained models are tested with pytorch 0.4.1, torchvision 0.2.1, opencv-python 4.1, and pillow 5.4 (Python 3.6).

In the meantime, check out our recent paper XingGAN and XingVTON.

Usage

This pipeline is a combination of consecutive training and testing of Cloth Interactive Transformer (CIT) Matching block based GMM and CIT Reasoning block based TOM. GMM generates the warped clothes according to the target human. Then, TOM blends the warped clothes outputs from GMM into the target human properties, to generate the final try-on output.

  1. Install the requirements
  2. Download/Prepare the dataset
  3. Train the CIT Matching block based GMM network
  4. Get warped clothes for training set with trained GMM network, and copy warped clothes & masks inside data/train directory
  5. Train the CIT Reasoning block based TOM network
  6. Test CIT Matching block based GMM for testing set
  7. Get warped clothes for testing set, copy warped clothes & masks inside data/test directory
  8. Test CIT Reasoning block based TOM testing set

Installation

This implementation is built and tested in PyTorch 0.4.1. Pytorch and torchvision are recommended to install with conda: conda install pytorch=0.4.1 torchvision=0.2.1 -c pytorch

For all packages, run pip install -r requirements.txt

Data Preparation

For training/testing VITON dataset, our full and processed dataset is available here: https://1drv.ms/u/s!Ai8t8GAHdzVUiQQYX0azYhqIDPP6?e=4cpFTI. After downloading, unzip to your own data directory ./data/.

Training

Run python train.py with your specific usage options for GMM and TOM stage.

For example, GMM: python train.py --name GMM --stage GMM --workers 4 --save_count 5000 --shuffle. Then run test.py for GMM network with the training dataset, which will generate the warped clothes and masks in "warp-cloth" and "warp-mask" folders inside the "result/GMM/train/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/train" folder.

Run TOM stage, python train.py --name TOM --stage TOM --workers 4 --save_count 5000 --shuffle

Evaluation

We adopt four evaluation metrics in our work for evaluating the performance of the proposed XingVTON. There are Jaccard score (JS), structral similarity index measure (SSIM), learned perceptual image patch similarity (LPIPS), and Inception score (IS).

Note that JS is used for the same clothing retry-on cases (with ground truth cases) in the first geometric matching stage, while SSIM and LPIPS are used for the same clothing retry-on cases (with ground truth cases) in the second try-on stage. In addition, IS is used for different clothing try-on (where no ground truth is available).

For JS

  • Step1: Runpython test.py --name GMM --stage GMM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/GMM_pretrained/gmm_final.pth then the parsed segmentation area for current upper clothing is used as the reference image, accompanied with generated warped clothing mask then:
  • Step2: Runpython metrics/getJS.py

For SSIM

After we run test.py for GMM network with the testibng dataset, the warped clothes and masks will be generated in "warp-cloth" and "warp-mask" folders inside the "result/GMM/test/" directory. Copy the "warp-cloth" and "warp-mask" folders into your data directory, for example inside "data/test" folder. Then:

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs_same.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth Then the original target human image is used as the reference image, accompanied with the generated retry-on image then:
  • Step2: Run python metrics/getSSIM.py

For LPIPS

  • Step1: You need to creat a new virtual enviriment, then install PyTorch 1.0+ and torchvision;
  • Step2: Run sh metrics/PerceptualSimilarity/testLPIPS.sh;

For IS

  • Step1: Run TOM stage test python test.py --name TOM --stage TOM --workers 4 --datamode test --data_list test_pairs.txt --checkpoint checkpoints/TOM_pretrained/tom_final.pth
  • Step2: Run python metrics/getIS.py

Inference

The pre-trained models are provided here. Download the pre-trained models and put them in this project (./checkpoints) Then just run the same step as Evaluation to test/inference our model.

Acknowledgements

This source code is inspired by CP-VTON, CP-VTON+. We are extremely grateful for their public implementation.

Citation

If you use this code for your research, please consider giving a star and citing our paper 🦖 :

CIT

@article{ren2021cloth,
  title={Cloth Interactive Transformer for Virtual Try-On},
  author={Ren, Bin and Tang, Hao and Meng, Fanyang and Ding, Runwei and Shao, Ling and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2104.05519},
  year={2021}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Bin Ren ([email protected]).

Owner
Bingoren
Bingoren
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022