Open-source Monocular Python HawkEye for Tennis

Overview

Tennis Tracking 🎾

Objectives

  • Track the ball
  • Detect court lines
  • Detect the players

To track the ball we used TrackNet - deep learning network for tracking high-speed objects. For players detection yolov3 was used.

Example using sample videos

Input Output
input_img1 output_img1
input_img2 output_img2
input_img3 output_img3

How to run

This project requires compatible GPU to install tensorflow, you can run it on your local machine in case you have one or use Google Colaboratory with Runtime Type changed to GPU.

  1. Clone this repository
  2. git clone https://github.com/ArtLabss/tennis-tracking
    
  3. Download yolov3 weights (237 MB) from here and add it to your Yolov3 folder.
  4. Install the requirements using pip
  5. pip install -r requirements.txt
  6. Run the following command in the command line
  7. python predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
  8. If you are using Google Colab upload all the files to Google Drive
  9. Create a Google Colaboratory Notebook in the same directory as predict_video.py and connect it to Google drive
  10. from google.colab import drive
    drive.mount('/content/drive')
  11. Change the working directory to the one where the Colab Notebook and predict_video.py are. In my case,
  12. import os 
    os.chdir('MyDrive/Colab Notebooks/tennis-tracking')
  13. Install the requirements
  14. !pip install -r requirements.txt
  15. Inside the notebook run predict_video.py
  16.  !python3 predict_video.py --input_video_path=VideoInput/video_input3.mp4 --output_video_path=VideoOutput/video_output.mp4 --minimap=0
    

    After the compilation is completed, a new video will be created in VideoOutput folder if --minimap was set 0, if --minimap=1 three videos will be created: video of the game, video of minimap and a combined video of both

    P.S. If you stumble upon an error or have any questions feel free to open a new Issue

What's new?

  • Court line detection improved
  • Player detection improved
  • The algorithm now works practically with any court colors
  • Faster algorithm
  • Dynamic Mini-Map with players and ball added, to activate use argument --minimap
--minimap=0 --minimap=1
input_img1 output_img1

Further Developments

  • Improve line detection of the court and remove overlapping lines
  • Algorithm fails to detect players when the court colors aren't similar to the sample video
  • Don't detect the ballboys/ballgirls
  • Don't contour the banners
  • Detect players on videos with different angles
  • Find the coordinates of the ball touching the court and display them
  • Code Optimization
  • Dynamic court mini-map with players and the ball

Current Drawbacks

  • Slow algorithms (to process 15 seconds video (6.1 Mb) it takes 28 minutes 16 minutes)
  • Algorithm works only on official match videos

References

- Yu-Chuan Huang, "TrackNet: Tennis Ball Tracking from Broadcast Video by Deep Learning Networks," Master Thesis, advised by Tsì-Uí İk and Guan-Hua Huang, National Chiao Tung University, Taiwan, April 2018. - Yu-Chuan Huang, I-No Liao, Ching-Hsuan Chen, Tsì-Uí İk, and Wen-Chih Peng, "TrackNet: A Deep Learning Network for Tracking High-speed and Tiny Objects in Sports Applications," in the IEEE International Workshop of Content-Aware Video Analysis (CAVA 2019) in conjunction with the 16th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS 2019), 18-21 September 2019, Taipei, Taiwan. - Joseph Redmon, Ali Farhadi, "YOLOv3: An Incremental Improvement", University of Washington, https://arxiv.org/pdf/1804.02767.pdf
Owner
ArtLabs
ArtLabs
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023
Pytorch port of Google Research's LEAF Audio paper

leaf-audio-pytorch Pytorch port of Google Research's LEAF Audio paper published at ICLR 2021. This port is not completely finished, but the Leaf() fro

Dennis Fedorishin 80 Oct 31, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Codes for NeurIPS 2021 paper "Adversarial Neuron Pruning Purifies Backdoored Deep Models"

Adversarial Neuron Pruning Purifies Backdoored Deep Models Code for NeurIPS 2021 "Adversarial Neuron Pruning Purifies Backdoored Deep Models" by Dongx

Dongxian Wu 31 Dec 11, 2022
DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

ChemRxiv | [Paper] XXX DeepStruc Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and the

Emil Thyge Skaaning Kjær 13 Aug 01, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023