Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Overview

Towards End-to-End Image Compression and Analysis with Transformers

Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Usage

The code is run with Python 3.7, Pytorch 1.8.1, Timm 0.4.9 and Compressai 1.1.4.

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg

Pretrained model

The ./pretrained_model provides the pretrained model without compression.

  • Test

Please adjust --data-path and run sh test.sh:

python main.py --eval --resume ./pretrain_s/checkpoint.pth --model pretrained_model --data-path /path/to/imagenet/ --output_dir ./eval

The ./pretrain_s/checkpoint.pth can be downloaded from Baidu Netdisk, with access code aaai.

  • Train

Please adjust --data-path and run sh train.sh:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model pretrained_model --no-model-ema --clip-grad 1.0 --batch-size 128 --num_workers 16 --data-path /path/to/imagenet/ --output_dir ./ckp_pretrain

Full model

The ./full_model provides the full model with compression.

  • Test

Please adjust --data-path and --resume, respectively. Run sh test.sh:

python main.py --eval --resume ./ckp_s_q1/checkpoint.pth --model full_model --no-pretrained --data-path /path/to/imagenet/ --output_dir ./eval

The ./ckp_s_q1/checkpoint.pth, ./ckp_s_q2/checkpoint.pth and ./ckp_s_q3/checkpoint.pth can be downloaded from Baidu Netdisk, with access code aaai.

  • Train

Please download ./pretrain_s/checkpoint.pth from Baidu Netdisk with access code aaai, adjust --data-path and --quality, respectively.

quality alpha beta
1 0.1 0.001
2 0.3 0.003
3 0.6 0.006

Run sh train.sh:

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model full_model --batch-size 128 --num_workers 16 --clip-grad 1.0 --quality 1 --data-path /path/to/imagenet/ --output_dir ./ckp_full

Citation

@InProceedings{Bai2022AAAI,
  title={Towards End-to-End Image Compression and Analysis with Transformers},
  author={Bai, Yuanchao and Yang, Xu and Liu, Xianming and Jiang, Junjun and Wang, Yaowei and Ji, Xiangyang and Gao, Wen},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022