FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

Related tags

Deep LearningFAST
Overview

FAST (Fusion Abundant multi-Source data download Terminal)

介绍

FAST 针对目前GNSS数据下载步骤繁琐、下载速度慢等问题,开发了一套较为完备的融合多源数据下载终端软件——FAST。
软件目前包含GNSS科研学习过程中绝大部分所需的数据源,采用并行下载的方式极大的提升了下载的效率。

Git地址

软件特点

  • 多平台:同时支持windows与linux系统;
  • 资源丰富:基本囊括了GNSS科研学习中所需的数据源,目前支持15个大类、62个小类,具体支持数据见数据支持
  • 快速:软件采用并行下载方式,在命令行参数运行模式可自行指定下载线程数,经测试下载100天的brdc+igs+clk文件只需要48.93s!
  • 易拓展:如需支持更多数据源,可在FTP_Source.py、GNSS_TYPE.py中指定所需的数据与数据源;
  • 简单易行:程序有引导下载模式与命令行带参数运行模式两种方式下载,直接运行程序便可进入引导下载模式,命令行带参数运行FAST -h可查看带参数运行模式介绍;
  • 灵活:在带参数运行模式下,用户可灵活指定下载类型、下载位置、下载时间、是否解压、线程数等,可根据自我需求编写bat、shell、python等脚本运行;
  • 轻便:windows程序包仅有18.9 MB,Liunx程序包仅有6.63 MB.

安装教程

  • Windows系统下仅需解压程序包即可直接运行,CMD运行FAST.exe -h可查看带参数运行模式介绍;
  • Linux系统下需安装先导软件wget\lftp\ncompress\python3,以Ubuntu系统为例,于终端中输入以下代码:
apt-get install wget
apt-get install lftp
apt-get install ncompress
apt-get install python3

安装后如windows系统下相同可直接运行程序,或将程序配置至环境变量中。

使用说明

引导下载模式Windows系统双击运行FAST.exe便可进入引导下载,若为Linux系统终端输入FAST运行即可:

  1. 以下载武汉大学多系统精密星历为例,在一级选择目录中选择SP3,即为输入2后回车;
    一级目录

  2. 选择MGEX_WUH_sp3即为输入6并回车,其中MGEX代表多系统,WUH代表武汉大学IGS数据处理中心,SP3代表精密星历; 二级目录

  3. 根据引导输入时间,回车完成输入; 输入时间

  4. 下载完成,根据提示直接回车完成解压或者输入任意字符回车不解压; 下载完成 解压完成

  5. 根据提示输入y再次进入引导或退出;
    在此引导

命令行带参数运行模式Windows系统CMD或power shell运行FAST.exe -h可查看命令行运行帮助,若为Linux系统终端输入FAST -h查看帮助:

  FAST : Fusion Abundant multi-Source data download Terminal
  ©Copyright 2022.01 @ Chang Chuntao
  PLEASE DO NOT SPREAD WITHOUT PERMISSION OF THE AUTHOR !

  Usage: FAST 

  Where the following are some of the options avaiable:

  -v,  --version                   display the version of GDD and exit
  -h,  --help                      print this help
  -t,  --type                      GNSS type, if you need to download multiple data,
                                   Please separate characters with " , "
                                   Example : GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk
  -l,  --loc                       which folder is the download in
  -y,  --year                      where year are the data to be download
  -d,  --day                       where day are the data to be download
  -o,  --day1                      where first day are the data to be download
  -e,  --day2                      where last day are the data to be download
  -m,  --month                     where month are the data to be download
  -u,  --uncomprss Y/N             Y - unzip file (default)
                                   N - do not unzip files
  -f,  --file                      site file directory,The site names in the file are separated by spaces.
                                   Example : bjfs irkj urum
  -p   --process                   number of threads (default 12)

  Example: FAST -t MGEX_IGS_atx
           FAST -t GPS_brdc,GPS_IGS_sp3,GPS_IGR_clk -y 2022 -d 22 -p 30
           FAST -t MGEX_WUH_sp3 -y 2022 -d 22 -u N -l D:\code\CDD\Example
           FAST -t MGEX_IGS_rnx -y 2022 -d 22 -f D:\code\cdd\mgex.txt
           FAST -t IVS_week_snx -y 2022 -m 1

数据支持

  1. BRDC : GPS_brdc / MGEX_brdm

  2. SP3 : GPS_IGS_sp3 / GPS_IGR_sp3 / GPS_IGU_sp3 / GPS_GFZ_sp3 / GPS_GRG_sp3
    MGEX_WUH_sp3 / MGEX_WUHU_sp3 / MGEX_GFZ_sp3 / MGEX_COD_sp3
    MGEX_SHA_sp3 / MGEX_GRG_sp3 / GLO_IGL_sp3

  3. RINEX :GPS_IGS_rnx / MGEX_IGS_rnx / GPS_USA_cors / GPS_HK_cors / GPS_EU_cors
    GPS_AU_cors

  4. CLK : GPS_IGS_clk / GPS_IGR_clk / GPS_IGU_clk / GPS_GFZ_clk / GPS_GRG_clk GPS_IGS_clk_30s MGEX_WUH_clk / MGEX_COD_clk / MGEX_GFZ_clk / MGEX_GRG_clk / WUH_PRIDE_clk

  5. ERP : IGS_erp / WUH_erp / COD_erp / GFZ_erp

  6. BIA : MGEX_WHU_bia / GPS_COD_bia / MGEX_COD_bia / MGEX_GFZ_bia

  7. ION : IGS_ion / WUH_ion / COD_ion

  8. SINEX : IGS_day_snx / IGS_week_snx / IVS_week_snx / ILS_week_snx / IDS_week_snx

  9. CNES_AR : CNES_post / CNES_realtime

  10. ATX : MGEX_IGS_atx

  11. DCB : GPS_COD_dcb / MGEX_CAS_dcb / MGEX_WHU_OSB / P1C1 / P1P2 / P2C2

  12. Time_Series : IGS14_TS_ENU / IGS14_TS_XYZ / Series_TS_Plot

  13. Velocity_Fields : IGS14_Venu / IGS08_Venu / PLATE_Venu

  14. SLR : HY_SLR / GRACE_SLR / BEIDOU_SLR

  15. OBX : GPS_COD_obx / GPS_GRG_obx / MGEX_WUH_obx / MGEX_COD_obx / MGEX_GFZ_obx

  16. TRO : IGS_zpd / COD_tro / JPL_tro / GRID_1x1_VMF3 / GRID_2.5x2_VMF1 / GRID_5x5_VMF3

参与贡献

  1. 常春涛@中国测绘科学研究院
    程序思路、主程序编写、文档编写、程序测试

  2. 蒋科材博士后@武汉大学
    程序思路、并行计算处理思路

  3. 慕任海博士@武汉大学
    程序思路、程序编写、程序测试

  4. 李博博士@辽宁工程技术大学&中国测绘科学研究院
    程序测试、文档编写、节点汇总

  5. 李勇熹@兰州交通大学&中国测绘科学研究院
    程序测试、节点汇总

  6. 曹多明@山东科技大学&中国测绘科学研究院
    程序测试、节点汇总

Owner
ChangChuntao
QQ 1252443496 WECHAT amst-jazz
ChangChuntao
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Akshat Surolia 2 May 11, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023