Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

Overview

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs

Directory Structure

data/ --> data folder including splits we use for FEVER, zsRE, Wikidata5m, and LeapOfThought
training_reports/ --> folder to be populated with individual training run reports produced by main.py
result_sheets/ --> folder to be populated with .csv's of results from experiments produced by main.py
aggregated_results/ --> contains combined experiment results produced by run_jobs.py
outputs/ --> folder to be populated with analysis results, including belief graphs and bootstrap outputs
models/ --> contains model wrappers for Huggingface models and the learned optimizer code
data_utils/ --> contains scripts for making all datasets used in paper
main.py --> main script for all individual experiments in the paper
metrics.py --> functions for calculing metrics reported in the paper
utils.py --> data loading and miscellaneous utilities
run_jobs.py --> script for running groups of experiments
statistical_analysis.py --> script for running bootstraps with the experimental results
data_analysis.Rmd --> R markdown file that makes plots using .csv's in result_sheets
requirements.txt --> contains required packages

Requirements

The code is compatible with Python 3.6+. data_analysis.Rmd is an R markdown file that makes all the plots in the paper.

The required packages can be installed by running:

pip install -r requirements.txt

If you wish to visualize belief graphs, you should also install a few packages as so:

sudo apt install python-pydot python-pydot-ng graphviz

Making Data

We include the data splits from the paper in data/ (though the train split for Wikidata5m is divided into two files that need to be locally combined.) To construct the datasets from scratch, you can follow a few steps:

  1. Set the DATA_DIR environment variable to where you'd like the data to be stored. Set the CODE_DIR to point to the directory where this code is.
  2. Run the following blocks of code

Make FEVER and ZSRE

cd $DATA_DIR
git clone https://github.com/facebookresearch/KILT.git
cd KILT
mkdir data
python scripts/download_all_kilt_data.py
mv data/* ./
cd $CODE_DIR
python data_utils/shuffle_fever_splits.py
python data_utils/shuffle_zsre_splits.py

Make Leap-Of-Thought

cd $DATA_DIR
git clone https://github.com/alontalmor/LeapOfThought.git
cd LeapOfThought
python -m LeapOfThought.run -c Hypernyms --artiset_module soft_reasoning -o build_artificial_dataset -v training_mix -out taxonomic_reasonings.jsonl.gz
gunzip taxonomic_reasonings_training_mix_train.jsonl.gz taxonomic_reasonings_training_mix_dev.jsonl.gz taxonomic_reasonings_training_mix_test.jsonl.gz taxonomic_reasonings_training_mix_meta.jsonl.gz
cd $CODE_DIR
python data_utils/shuffle_leapofthought_splits.py

Make Wikidata5m

cd $DATA_DIR
mkdir Wikidata5m
cd Wikidata5m
wget https://www.dropbox.com/s/6sbhm0rwo4l73jq/wikidata5m_transductive.tar.gz
wget https://www.dropbox.com/s/lnbhc8yuhit4wm5/wikidata5m_alias.tar.gz
tar -xvzf wikidata5m_transductive.tar.gz
tar -xvzf wikidata5m_alias.tar.gz
cd $CODE_DIR
python data_utils/filter_wikidata.py

Experiment Replication

Experiment commands require a few arguments: --data_dir points to where the data is. --save_dir points to where models should be saved. --cache_dir points to where pretrained models will be stored. --gpu indicates the GPU device number. --seeds indicates how many seeds per condition to run. We give commands below for the experiments in the paper, saving everything in $DATA_DIR.

To train the task and prepare the necessary data for training learned optimizers, run:

python run_jobs.py -e task_model --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e write_LeapOfThought_preds --seeds 5 --dataset LeapOfThought --do_train false --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the main experiments in a single-update setting, run:

python run_jobs.py -e learned_opt_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

For results in a sequential-update setting (with r=10) run:

python run_jobs.py -e learned_opt_r_main --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get the corresponding off-the-shelf optimizer baselines for these experiments, run

python run_jobs.py -e base_optimizers --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e base_optimizers_r_main --seeds 5 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

To get ablations across values of r for the learned optimizer and baselines, run

python run_jobs.py -e base_optimizers_r_ablation --seeds 1 --do_train false  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Next we give commands for for ablations across k, the choice of training labels, the choice of evaluation labels, training objective terms, and a comparison to the objective from de Cao (in order):

python run_jobs.py -e learned_opt_k_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_label_ablation --seeds 1 --dataset ZSRE --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_eval_ablation --seeds 1 --dataset ZSRE  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_objective_ablation --seeds 1 --dataset all  --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR
python run_jobs.py -e learned_opt_de_cao --seeds 5 --dataset all --data_dir $DATA_DIR --save_dir $DATA_DIR --cache_dir $DATA_DIR

Analysis

Statistical Tests

After running an experiment from above, you can compute confidence intervals and hypothesis tests using statistical_analysis.py.

To get confidence intervals for the main single-update learned optimizer experiments, run

python statistical_analysis -e learned_opt_main -n 10000

To run hypothesis tests between statistics for the learned opt experiment and its baselines, run

python statistical_analysis -e learned_opt_main -n 10000 --hypothesis_tests true

You can substitute the experiment name for results for other conditions.

Belief Graphs

Add --save_dir, --cache_dir, and --data_dir arguments to the commands below per the instructions above.

Write preds from FEVER model:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true

Write graph to file:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer adamw --lr 1e-6 --update_steps 100 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 10444

Analyze graph:
python main.py --dataset FEVER --probing_style model --probe linear --model roberta-base --seed 0 --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --use_dev_not_test false --optimizer adamw --lr 1e-6 --update_steps 100 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Combine LeapOfThought Main Inputs and Entailed Data:
python data_utils/combine_leapofthought_data.py

Write LeapOfThought preds to file:
python main.py --dataset LeapOfThought --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --write_preds_to_file true --leapofthought_main main

Write graph for LeapOfThought:
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --update_all_points true --write_graph_to_file true --use_dev_not_test false --num_random_other 8642

Analyze graph (add --num_eval_points 2000 to compute update-transitivity):
python main.py --dataset LeapOfThought --leapofthought_main main --probing_style model --probe linear --model roberta-base --seed 0 --do_train false --do_eval true --test_batch_size 64 --update_eval_truthfully false --fit_to_alt_labels true --update_beliefs true --optimizer sgd --update_steps 100 --lr 1e-2 --do_train false --do_eval false --pre_eval false --do_graph_analysis true

Plots

The data_analysis.Rmd R markdown file contains code for plots in the paper. It reads data from aggregated_results and saves plots in a ./figures directory.

Owner
Peter Hase
I am a PhD student in the UNC-NLP group at UNC Chapel Hill.
Peter Hase
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023