Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

Overview

FCN.tensorflow

Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs).

The implementation is largely based on the reference code provided by the authors of the paper link. The model was applied on the Scene Parsing Challenge dataset provided by MIT http://sceneparsing.csail.mit.edu/.

  1. Prerequisites
  2. Results
  3. Observations
  4. Useful links

Prerequisites

  • The results were obtained after training for ~6-7 hrs on a 12GB TitanX.
  • The code was originally written and tested with tensorflow0.11 and python2.7. The tf.summary calls have been updated to work with tensorflow version 0.12. To work with older versions of tensorflow use branch tf.0.11_compatible.
  • Some of the problems while working with tensorflow1.0 and in windows have been discussed in Issue #9.
  • To train model simply execute python FCN.py
  • To visualize results for a random batch of images use flag --mode=visualize
  • debug flag can be set during training to add information regarding activations, gradients, variables etc.
  • The IPython notebook in logs folder can be used to view results in color as below.

Results

Results were obtained by training the model in batches of 2 with resized image of 256x256. Note that although the training is done at this image size - Nothing prevents the model from working on arbitrary sized images. No post processing was done on the predicted images. Training was done for 9 epochs - The shorter training time explains why certain concepts seem semantically understood by the model while others were not. Results below are from randomly chosen images from validation dataset.

Pretty much used the same network design as in the reference model implementation of the paper in caffe. The weights for the new layers added were initialized with small values, and the learning was done using Adam Optimizer (Learning rate = 1e-4).

Observations

  • The small batch size was necessary to fit the training model in memory but explains the slow learning
  • Concepts that had many examples seem to be correctly identified and segmented - in the example above you can see that cars, persons were identified better. I believe this can be solved by training for longer epochs.
  • Also the resizing of images cause loss of information - you can notice this in the fact smaller objects are segmented with less accuracy.

Now for the gradients,

  • If you closely watch the gradients you will notice the inital training is almost entirely on the new layers added - it is only after these layers are reasonably trained do we see the VGG layers get some gradient flow. This is understandable as changes the new layers affect the loss objective much more in the beginning.
  • The earlier layers of the netowrk are initialized with VGG weights and so conceptually would require less tuning unless the train data is extremely varied - which in this case is not.
  • The first layer of convolutional model captures low level information and since this entrirely dataset dependent you notice the gradients adjusting the first layer weights to accustom the model to the dataset.
  • The other conv layers from VGG have very small gradients flowing as the concepts captured here are good enough for our end objective - Segmentation.
  • This is the core reason Transfer Learning works so well. Just thought of pointing this out while here.

Useful Links

  • Video of the presentaion given by the authors on the paper - link
Owner
Sarath Shekkizhar
PhD Student at University of Southern California; Interests: Graphs, Machine Learning
Sarath Shekkizhar
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021