πŸ’ƒ VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

Related tags

Deep LearningVALSE
Overview

VALSE πŸ’ƒ

πŸ’ƒ VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena. https://arxiv.org/abs/2112.07566

Data Instructions

Please find the data in the data folder. The dataset is in json format and contains the following relevant fields:

  • A reference to the image in the original dataset: dataset and image_file.
  • The valid sentence, the caption for VALSE: caption.
  • The altered caption, the foil.
  • The annotator's votes (3 annotators per sample): mturk.
    • The subentry caption counts the number of annotators who chose the caption, but/and not the foil, to be the one describing the image.
    • The subentry foil counts how many of the three annotators chose the foil to be (also) describing the image.
    • For more information, see subsec. 4.4 and App. E of the paper.

‼️ Please be aware that the jsons are containing both valid (meaning: validated by annotators) and non-validated samples. In order to work only with the valid set, please consider filtering them:

We consider a valid foil to mean: at least two out of three annotators identified the caption, but not the foil, as the text which accurately describes the image.

This means that the valid samples of the dataset are the ones where sample["mturk"]["caption"] >= 2.

Example instance:

{
    "actions_test_0": {
        "dataset": "SWiG",
        "original_split": "test",                 # the split of the original dataset in which the sample belonged to
        "dataset_idx": "exercising_255.jpg",      # the sample id in the original dataset
        "linguistic_phenomena": "actions",        # the linguistic phenomenon targeted
        "image_file": "exercising_255.jpg",
        "caption": "A man exercises his torso.",
        "classes": "man",                         # the word of the caption that was replaced
        "classes_foil": "torso",                  # the foil word / phrase
        "mturk": {
            "foil": 0,
            "caption": 3,
            "other": 0
        },
        "foil": "A torso exercises for a man."
    }, ...
}

Images

For the images, please follow the downloading instructions of the respective original dataset. The provenance of the original images is mentioned in the json files in the field dataset.

Reference

Please cite our πŸ’ƒ VALSE paper if you are using this dataset.

@misc{parcalabescu2021valse,
      title={VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena}, 
      author={Letitia Parcalabescu and Michele Cafagna and Lilitta Muradjan and Anette Frank and Iacer Calixto and Albert Gatt},
      year={2021},
      eprint={2112.07566},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Heidelberg-NLP
Heidelberg Natural Language Processing Group
Heidelberg-NLP
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction RenΓ© Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo LΓΌddecke 305 Dec 30, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
sktime companion package for deep learning based on TensorFlow

NOTE: sktime-dl is currently being updated to work correctly with sktime 0.6, and wwill be fully relaunched over the summer. The plan is Refactor and

sktime 573 Jan 05, 2023
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

πŸ”₯ DrugOOD πŸ”₯ : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022