Geometry-Free View Synthesis: Transformers and no 3D Priors

Overview

Geometry-Free View Synthesis: Transformers and no 3D Priors

teaser

Geometry-Free View Synthesis: Transformers and no 3D Priors
Robin Rombach*, Patrick Esser*, Björn Ommer
* equal contribution

arXiv | BibTeX | Colab

Interactive Scene Exploration Results

RealEstate10K:
realestate
Videos: short (2min) / long (12min)

ACID:
acid
Videos: short (2min) / long (9min)

Demo

For a quickstart, you can try the Colab demo, but for a smoother experience we recommend installing the local demo as described below.

Installation

The demo requires building a PyTorch extension. If you have a sane development environment with PyTorch, g++ and nvcc, you can simply

pip install git+https://github.com/CompVis/geometry-free-view-synthesis#egg=geometry-free-view-synthesis

If you run into problems and have a GPU with compute capability below 8, you can also use the provided conda environment:

git clone https://github.com/CompVis/geometry-free-view-synthesis
conda env create -f geometry-free-view-synthesis/environment.yaml
conda activate geofree
pip install geometry-free-view-synthesis/

Running

After installation, running

braindance.py

will start the demo on a sample scene. Explore the scene interactively using the WASD keys to move and arrow keys to look around. Once positioned, hit the space bar to render the novel view with GeoGPT.

You can move again with WASD keys. Mouse control can be activated with the m key. Run braindance.py to run the demo on your own images. By default, it uses the re-impl-nodepth (trained on RealEstate without explicit transformation and no depth input) which can be changed with the --model flag. The corresponding checkpoints will be downloaded the first time they are required. Specify an output path using --video path/to/vid.mp4 to record a video.

> braindance.py -h
usage: braindance.py [-h] [--model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}] [--video [VIDEO]] [path]

What's up, BD-maniacs?

key(s)       action                  
=====================================
wasd         move around             
arrows       look around             
m            enable looking with mouse
space        render with transformer 
q            quit                    

positional arguments:
  path                  path to image or directory from which to select image. Default example is used if not specified.

optional arguments:
  -h, --help            show this help message and exit
  --model {re_impl_nodepth,re_impl_depth,ac_impl_nodepth,ac_impl_depth}
                        pretrained model to use.
  --video [VIDEO]       path to write video recording to. (no recording if unspecified).

Training

Data Preparation

We support training on RealEstate10K and ACID. Both come in the same format as described here and the preparation is the same for both of them. You will need to have colmap installed and available on your $PATH.

We assume that you have extracted the .txt files of the dataset you want to prepare into $TXT_ROOT, e.g. for RealEstate:

> tree $TXT_ROOT
├── test
│   ├── 000c3ab189999a83.txt
│   ├── ...
│   └── fff9864727c42c80.txt
└── train
    ├── 0000cc6d8b108390.txt
    ├── ...
    └── ffffe622a4de5489.txt

and that you have downloaded the frames (we downloaded them in resolution 640 x 360) into $IMG_ROOT, e.g. for RealEstate:

> tree $IMG_ROOT
├── test
│   ├── 000c3ab189999a83
│   │   ├── 45979267.png
│   │   ├── ...
│   │   └── 55255200.png
│   ├── ...
│   ├── 0017ce4c6a39d122
│   │   ├── 40874000.png
│   │   ├── ...
│   │   └── 48482000.png
├── train
│   ├── ...

To prepare the $SPLIT split of the dataset ($SPLIT being one of train, test for RealEstate and train, test, validation for ACID) in $SPA_ROOT, run the following within the scripts directory:

python sparse_from_realestate_format.py --txt_src ${TXT_ROOT}/${SPLIT} --img_src ${IMG_ROOT}/${SPLIT} --spa_dst ${SPA_ROOT}/${SPLIT}

You can also simply set TXT_ROOT, IMG_ROOT and SPA_ROOT as environment variables and run ./sparsify_realestate.sh or ./sparsify_acid.sh. Take a look into the sources to run with multiple workers in parallel.

Finally, symlink $SPA_ROOT to data/realestate_sparse/data/acid_sparse.

First Stage Models

As described in our paper, we train the transformer models in a compressed, discrete latent space of pretrained VQGANs. These pretrained models can be conveniently downloaded by running

python scripts/download_vqmodels.py 

which will also create symlinks ensuring that the paths specified in the training configs (see configs/*) exist. In case some of the models have already been downloaded, the script will only create the symlinks.

For training custom first stage models, we refer to the taming transformers repository.

Running the Training

After both the preparation of the data and the first stage models are done, the experiments on ACID and RealEstate10K as described in our paper can be reproduced by running

python geofree/main.py --base configs//_13x23_.yaml -t --gpus 0,

where is one of realestate/acid and is one of expl_img/expl_feat/expl_emb/impl_catdepth/impl_depth/impl_nodepth/hybrid. These abbreviations correspond to the experiments listed in the following Table (see also Fig.2 in the main paper)

variants

Note that each experiment was conducted on a GPU with 40 GB VRAM.

BibTeX

@misc{rombach2021geometryfree,
      title={Geometry-Free View Synthesis: Transformers and no 3D Priors}, 
      author={Robin Rombach and Patrick Esser and Björn Ommer},
      year={2021},
      eprint={2104.07652},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022