Customizing Visual Styles in Plotly

Overview

Customizing Visual Styles in Plotly

Code for a workshop originally developed for an Unconference session during the Outlier Conference hosted by Data Visualization Society.

To jump right in:

Fork this repository, or download the Jupyter Notebook file Styling_Plotly_Themes_Templates.ipynb.

Ever have that feeling that a lot of data viz you see screams the tool it was made in? Using the Plotly Open Source Python Graphing Library, we will take a look under the hood of:

  • the style themes available,
  • understand the visual elements like figure and chart backgrounds, and
  • build our own default theme script inspired by 1980's computers.

This informal workshop is for a seasoned Pythonista wanting to add to your design toolbox or a newbie curious about custom interfaces beyond the usual BI tools (listen or follow along).

You can also check out all of Plotly's open source graphing libraries, including R, JavaScript, and more here.

Quick Start Prep

(most of this occurs before the workshop to follow along live...)

We're not going to spend too much time here, but if you're just starting out in Python, and want to get your hands dirty, here's a few building blocks useful to get the most from the workshop:

  1. Python ...All you really need is a Python code interpreter installed as a foundation.

    1. Start from the source, Python Software Foundation's helpful steps and downloads (yep, the be all end all source).
      1. Many computers come with a version pre-installed, a bit old, but if you don't want to touch or download anything, it may get you acquainted, at least. (to check in command line or terminal, run python --version)
    2. Or Python comes with an Anaconda installation (bigger topic than this workshop, but if you're in it for the long haul using Python consider e.g. the Individual Edition or a miniconda).

  2. A virtual environment (optional, but do this next if you're doing it.)

    1. Skip this step if the sound of it or # steps has you scared away already! Don't go, stay!
    2. It's recommended, but not necessary, to make and work in an isolated virtual environment for any Python project like this one, to help manage work requiring different versions of things.
      1. Options to manage this:
        1. I find virtualenv a sure bet,
          1. (e.g. On Mac Terminal (Zsh), from my project root folder, I ran virtualenv plotlystyle_env to make it; to activate it, I'll run source plotlystyle_env/bin/activate) _pip install virtualenv_if necessary first.
          2. I'll refer you to the docs for Windows.
        2. the simplified venv built into Python version 3.3+,
        3. Conda which I feel is cleanest with its centralized file structure, but fussy at times like an angry schoolchild, and
        4. those are the big ones.

  3. Jupyter Notebook (strongly recommended, we'll spend the workshop in the .ipynb Notebook file)

    1. Notebooks run directly in your web browser, so you need: Chrome, Safari, or Firefox (up to date Opera and Edge maybe works)

    2. If you installed an Anaconda distribution in step 1, congratulations, Jupyter Notebook is included! Read up on running the Notebook where we'll pick up!

    3. You can alternately install Jupyter Notebook with the pip package manager.

    4. If you're working in a virtual environment (step 2 above), also install the IPython kernel.

      1. Otherwise, this Jupyter Notebooks does have this automatically for your system Python interpreter.
      2. This basically supports more quick, interactive, code which makes Notebooks great for learning in chunks, and exploring without running a whole script.
  4. Kiss your brain!

Who's tired of hyperlinks and docs already?! You promised fun!

General Disclaimer

This work is open source, like Plotly Open Source Graphing Libraries, so try it, use it and spread the love by teaching someone else!
To keep up with what others are working on, join the Plotly Community Forum. Made with 💌 for the Python and data viz ecosystems under the limited liability company Data, Design & Daughters LLC doing business as Data Design Dimension by Kathryn Hurchla.

Owner
Data Design Dimension
Impact. Visualize. Grow. Full lifecycle data studio to optimize, build flows, and gain traction while you go.
Data Design Dimension
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
Fast 1D and 2D histogram functions in Python

About Sometimes you just want to compute simple 1D or 2D histograms with regular bins. Fast. No nonsense. Numpy's histogram functions are versatile, a

Thomas Robitaille 237 Dec 18, 2022
A small timeseries transformation API built on Flask and Pandas

#Mcflyin ###A timeseries transformation API built on Pandas and Flask This is a small demo of an API to do timeseries transformations built on Flask a

Rob Story 84 Mar 25, 2022
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
A tool for creating Toontown-style nametags in Panda3D

Toontown-Nametag Toontown-Nametag is a tool for creating Toontown Online/Toontown Rewritten-style nametags in Panda3D. It contains a function, createN

BoggoTV 2 Dec 23, 2021
Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies

py-self-organizing-map Simple implementation of Self Organizing Maps (SOMs) with rectangular and hexagonal grid topologies. A SOM is a simple unsuperv

Jonas Grebe 1 Feb 10, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
Create 3d loss surface visualizations, with optimizer path. Issues welcome!

MLVTK A loss surface visualization tool Simple feed-forward network trained on chess data, using elu activation and Adam optimizer Simple feed-forward

7 Dec 21, 2022
This is a Boids Simulation, written in Python with Pygame.

PyNBoids A Python Boids Simulation This is a Boids simulation, written in Python3, with Pygame2 and NumPy. To use: Save the pynboids_sp.py file (and n

Nik 17 Dec 18, 2022
Some examples with MatPlotLib library in Python

MatPlotLib Example Some examples with MatPlotLib library in Python Point: Run files only in project's directory About me Full name: Matin Ardestani Ag

Matin Ardestani 4 Mar 29, 2022
ecoglib: visualization and statistics for high density microecog signals

ecoglib: visualization and statistics for high density microecog signals This library contains high-level analysis tools for "topos" and "chronos" asp

1 Nov 17, 2021
Example scripts for generating plots of Bohemian matrices

Bohemian Eigenvalue Plotting Examples This repository contains examples of generating plots of Bohemian eigenvalues. The examples in this repository a

Bohemian Matrices 5 Nov 12, 2022
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
Investment and risk technologies maintained by Fortitudo Technologies.

Fortitudo Technologies Open Source This package allows you to freely explore open-source implementations of some of our fundamental technologies under

Fortitudo Technologies 11 Dec 14, 2022
Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax.

PyDexter Simple plotting for Python. Python wrapper for D3xter - render charts in the browser with simple Python syntax. Setup $ pip install PyDexter

D3xter 31 Mar 06, 2021
An easy to use burndown chart generator for GitHub Project Boards.

Burndown Chart for GitHub Projects An easy to use burndown chart generator for GitHub Project Boards. Table of Contents Features Installation Assumpti

Joseph Hale 15 Dec 28, 2022
Functions for easily making publication-quality figures with matplotlib.

Data-viz utils 📈 Functions for data visualization in matplotlib 📚 API Can be installed using pip install dvu and then imported with import dvu. You

Chandan Singh 16 Sep 15, 2022
Small project demonstrating the use of Grafana and InfluxDB for monitoring the speed of an internet connection

Speedtest monitor for Grafana A small project that allows internet speed monitoring using Grafana, InfluxDB 2 and Speedtest. Demo Requirements Docker

Joshua Ghali 3 Aug 06, 2021
Lumen provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

Lumen project provides a framework for visual analytics, which allows users to build data-driven dashboards from a simple yaml specification

HoloViz 120 Jan 04, 2023