A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

Overview

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks

A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR-DPML and MLSys21 - GNNSys'21 workshops.

Datasets: http://moleculenet.ai/

Installation

After git clone-ing this repository, please run the following command to install our dependencies.

conda create -n fedgraphnn python=3.7
conda activate fedgraphnn
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -n fedmolecule
conda install -c anaconda mpi4py grpcio
conda install scikit-learn numpy h5py setproctitle networkx
pip install -r requirements.txt 
cd FedML; git submodule init; git submodule update; cd ../;
pip install -r FedML/requirements.txt

Data Preparation

Experiments

Centralized Molecule Property Classification experiments

python experiments/centralized/moleculenet/molecule_classification_multilabel.py

Centralized Molecule Property Regression experiments

python experiments/centralized/moleculenet/molecule_regression_multivariate.py

Arguments for Centralized Training

This is a list of arguments used in centralized experiments.

--dataset --> Dataset used for training
--data_dir' --> Data directory
--partition_method -> how to partition the dataset
--sage_hidden_size' -->Size of GraphSAGE hidden layer
--node_embedding_dim --> Dimensionality of the vector space the atoms will be embedded in
--sage_dropout --> Dropout used between GraphSAGE layers
--readout_hidden_dim --> Size of the readout hidden layer
--graph_embedding_dim --> Dimensionality of the vector space the molecule will be embedded in
--client_optimizer -> Optimizer function(Adam or SGD)
--lr --> learning rate (default: 0.0015)
--wd --> Weight decay(default=0.001)
--epochs -->Number of epochs
--frequency_of_the_test --> How frequently to run eval
--device -->gpu device for training

Distributed/Federated Molecule Property Classification experiments

sh run_fedavg_distributed_pytorch.sh 6 1 1 1 graphsage homo 150 1 1 0.0015 256 256 0.3 256 256  sider "./../../../data/sider/" 0

##run on background
nohup sh run_fedavg_distributed_pytorch.sh 6 1 1 1 graphsage homo 150 1 1 0.0015 256 256 0.3 256 256  sider "./../../../data/sider/" 0 > ./fedavg-graphsage.log 2>&1 &

Distributed/Federated Molecule Property Regression experiments

sh run_fedavg_distributed_reg.sh 6 1 1 1 graphsage homo 150 1 1 0.0015 256 256 0.3 256 256 freesolv "./../../../data/freesolv/" 0

##run on background
nohup sh run_fedavg_distributed_reg.sh 6 1 1 1 graphsage homo 150 1 1 0.0015 256 256 0.3 256 256 freesolv "./../../../data/freesolv/" 0 > ./fedavg-graphsage.log 2>&1 &

Arguments for Distributed/Federated Training

This is an ordered list of arguments used in distributed/federated experiments. Note, there are additional parameters for this setting.

CLIENT_NUM=$1 -> Number of clients in dist/fed setting
WORKER_NUM=$2 -> Number of workers
SERVER_NUM=$3 -> Number of servers
GPU_NUM_PER_SERVER=$4 -> GPU number per server
MODEL=$5 -> Model name
DISTRIBUTION=$6 -> Dataset distribution. homo for IID splitting. hetero for non-IID splitting.
ROUND=$7 -> Number of Distiributed/Federated Learning Rounds
EPOCH=$8 -> Number of epochs to train clients' local models
BATCH_SIZE=$9 -> Batch size 
LR=${10}  -> learning rate
SAGE_DIM=${11} -> Dimenionality of GraphSAGE embedding
NODE_DIM=${12} -> Dimensionality of node embeddings
SAGE_DR=${13} -> Dropout rate applied between GraphSAGE Layers
READ_DIM=${14} -> Dimensioanlity of readout embedding
GRAPH_DIM=${15} -> Dimensionality of graph embedding
DATASET=${16} -> Dataset name (Please check data folder to see all available datasets)
DATA_DIR=${17} -> Dataset directory
CI=${18}

Code Structure of FedGraphNN

  • FedML: A soft repository link generated using git submodule add https://github.com/FedML-AI/FedML.

  • data: Provide data downloading scripts and store the downloaded datasets. Note that in FedML/data, there also exists datasets for research, but these datasets are used for evaluating federated optimizers (e.g., FedAvg) and platforms. FedGraphNN supports more advanced datasets and models for federated training of graph neural networks. Currently, we have molecular machine learning datasets.

  • data_preprocessing: Domain-specific PyTorch Data loaders for centralized and distributed training.

  • model: GNN models.

  • trainer: please define your own trainer.py by inheriting the base class in FedML/fedml-core/trainer/fedavg_trainer.py. Some tasks can share the same trainer.

  • experiments/distributed:

  1. experiments is the entry point for training. It contains experiments in different platforms. We start from distributed.
  2. Every experiment integrates FOUR building blocks FedML (federated optimizers), data_preprocessing, model, trainer.
  3. To develop new experiments, please refer the code at experiments/distributed/text-classification.
  • experiments/centralized:
  1. please provide centralized training script in this directory.
  2. This is used to get the reference model accuracy for FL.
  3. You may need to accelerate your training through distributed training on multi-GPUs and multi-machines. Please refer the code at experiments/centralized/DDP_demo.

Update FedML Submodule

cd FedML
git checkout master && git pull
cd ..
git add FedML
git commit -m "updating submodule FedML to latest"
git push

Citation

Please cite our FedML paper if it helps your research. You can describe us in your paper like this: "We develop our experiments based on FedML".

@misc{he2021fedgraphnn,
      title={FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks}, 
      author={Chaoyang He and Keshav Balasubramanian and Emir Ceyani and Yu Rong and Peilin Zhao and Junzhou Huang and Murali Annavaram and Salman Avestimehr},
      year={2021},
      eprint={2104.07145},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
FedML-AI
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML-AI
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022