TVNet: Temporal Voting Network for Action Localization

Related tags

Deep LearningTVNet
Overview

TVNet: Temporal Voting Network for Action Localization

This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization".

Paper Introduction

Temporal action localization is a vital task in video understranding. In this paper, we propose a Temporal Voting Network (TVNet) for action localization in untrimmed videos. This incorporates a novel Voting Evidence Module to locate temporal boundaries, more accurately, where temporal contextual evidence is accumulated to predict frame-level probabilities of start and end action boundaries.

Dependencies

  • Python == 2.7
  • Tensorflow == 1.9.0
  • CUDA==10.1.105
  • GCC >= 5.4

Note that the PEM code from BMN is implemented in Pytorch==1.1.0 or 1.3.0

Data Preparation

Datasets

Our experiments is based on ActivityNet 1.3 and THUMOS14 datasets.

Feature for THUMOS14

You can download the feature on THUMOS14 at here GooogleDrive.

Place it into a folder named thumos_features inside ./data.

You also need to download the feature for PEM (from BMN) at GooogleDrive. Please put it into a folder named Thumos_feature_hdf5 inside ./TVNet-THUMOS14/data/thumos_features.

If everything goes well, you can get the folder architecture of ./TVNet-THUMOS14/data like this:

data                       
└── thumos_features                    
		├── Thumos_feature_dim_400              
		├── Thumos_feature_hdf5               
		├── features_train.npy 
		└── features_test.npy

Feature for ActivityNet 1.3

You can download the feature on ActivityNet 1.3 at here GoogleCloud. Please put csv_mean_100 directory into ./TVNet-ANET/data/activitynet_feature_cuhk/.

If everything goes well, you can get the folder architecture of ./TVNet-ANET/data like this:

data                        
└── activitynet_feature_cuhk                    
		    └── csv_mean_100

Run all steps

Run all steps on THUMOS14

cd TVNet-THUMOS14

Run the following script with all steps on THUMOS14:

bash do_all.sh

Note: If you use BlueCrystal 4, you can directly run the following script without any dependencies setup.

bash do_all_BC4.sh

Run all steps on ActivityNet 1.3

cd TVNet-ANET
bash do_all.sh  or  bash do_all_BC4.sh

Run steps separately

Take TVNet-THUMOS14 as an example:

cd TVNet-THUMOS14

1. Temporal evaluation module

python TEM_train.py
python TEM_test.py

2. Creat training data for voting evidence module

python VEM_create_windows.py --window_length L --window_stride S

L is the window length and S is the sliding stride. We generate training windows for length 10 with stride 5, and length 5 with stride 2.

3. Voting evidence module

python VEM_train.py --voting_type TYPE --window_length L --window_stride S
python VEM_test.py --voting_type TYPE --window_length L --window_stride S

TYPE should be start or end. We train and test models with window length 10 (stride 5) and window length 5 (stride 2) for start and end separately.

4. Proposal evaluation module from BMN

python PEM_train.py

5. Proposal generation

python proposal_generation.py

6. Post processing and detection

python post_postprocess.py

Results

THUMOS14

tIoU [email protected]
0.3 0.5724681814413137
0.4 0.5060844218403346
0.5 0.430414918823808
0.6 0.3297164845828022
0.7 0.202971546242546

ActivityNet 1.3

tIoU [email protected]
Average 0.3460396513933088
0.5 0.5135151163296395
0.75 0.34955648726767025
0.95 0.10121803584836778

Reference

This implementation borrows from:

BSN: BSN-Boundary-Sensitive-Network

TEM_train/test.py -- for the TEM module we used in our paper
load_dataset.py -- borrow the part which load data for TEM

BMN: BMN-Boundary-Matching-Network

PEM_train.py -- for the PEM module we used in our paper

G-TAD: Sub-Graph Localization for Temporal Action Detection

post_postprocess.py -- for the multicore process to generate detection

Our main contribution is in:

VEM_create_windows.py -- generate training annotations for Voting Evidence Module (VEM)

VEM_train.py -- train Voting Evidence Module (VEM)

VEM_test.py -- test Voting Evidence Module (VEM)
Owner
hywang
hywang
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023