Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Related tags

Deep LearningIVR
Overview

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

99% of the code in this repository originates from this link.

ICCV 2021 paper

Jeesoo Kim1, Junsuk Choe2, Sangdoo Yun3, Nojun Kwak1

1 Seoul National University 2 Sogang University 3 Naver AI Lab

Weakly-supervised object localization (WSOL) enables finding an object using a dataset without any localization information. By simply training a classification model using only image-level annotations, the feature map of the model can be utilized as a score map for localization. In spite of many WSOL methods proposing novel strategies, there has not been any de facto standard about how to normalize the class activation map (CAM). Consequently, many WSOL methods have failed to fully exploit their own capacity because of the misuse of a normalization method. In this paper, we review many existing normalization methods and point out that they should be used according to the property of the given dataset. Additionally, we propose a new normalization method which substantially enhances the performance of any CAM-based WSOL methods. Using the proposed normalization method, we provide a comprehensive evaluation over three datasets (CUB, ImageNet and OpenImages) on three different architectures and observe significant performance gains over the conventional min-max normalization method in all the evaluated cases.

RubberDuck

Re-evaluated performance of several WSOL methods using different normalization methods. Comparison of several WSOL methods with different kinds of normalization methods for a class activation map. The accuracy has been evaluated under MaxBoxAccV2 with CUB-200-2011 dataset. All scores in this figure are the average scores of ResNet50, VGG16, and InceptionV3. In all WSOL methods, the performance using our normalization method, IVR, is the best.

Prerequisite

Dataset preparation, Code dependencies are available in the original repository. [Evaluating Weakly Supervised Object Localization Methods Right (CVPR 2020)] (paper)
This repository is highly dependent on this repo and we highly recommend users to refer the original one.

Licenses

The licenses corresponding to the dataset are summarized as follows

Dataset Images Class Annotations Localization Annotations
ImageNetV2 See the original Github See the original Github CC-BY-2.0 NaverCorp.
CUBV2 Follows original image licenses. See here. CC-BY-2.0 NaverCorp. CC-BY-2.0 NaverCorp.
OpenImages CC-BY-2.0 (Follows original image licenses. See here) CC-BY-4.0 Google LLC CC-BY-4.0 Google LLC

Detailed license files are summarized in the release directory.

Note: At the time of collection, images were marked as being licensed under the following licenses:

Attribution-NonCommercial License
Attribution License
Public Domain Dedication (CC0)
Public Domain Mark

However, we make no representations or warranties regarding the license status of each image. You should verify the license for each image yourself.

WSOL training and evaluation

We additionally support the following normalization methods:

  • Normalization.
    • Min-max
    • Max
    • PaS
    • IVR

Below is an example command line for the train+eval script.

python main.py --dataset_name CUB \
               --architecture vgg16 \
               --wsol_method cam \
               --experiment_name CUB_vgg16_CAM \
               --pretrained TRUE \
               --num_val_sample_per_class 5 \
               --large_feature_map FALSE \
               --batch_size 32 \
               --epochs 50 \
               --lr 0.00001268269 \
               --lr_decay_frequency 15 \
               --weight_decay 5.00E-04 \
               --override_cache FALSE \
               --workers 4 \
               --box_v2_metric True \
               --iou_threshold_list 30 50 70 \
               --eval_checkpoint_type last
               --norm_method ivr

See config.py for the full descriptions of the arguments, especially the method-specific hyperparameters.

Experimental results

Details about experiments are available in the paper.

Code license

This project is distributed under MIT license.

Copyright (c) 2020-present NAVER Corp.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5. Citation

@article{kim2021normalization,
  title={Normalization Matters in Weakly Supervised Object Localization},
  author={Kim, Jeesoo and Choe, Junsuk and Yun, Sangdoo and Kwak, Nojun},
  journal={arXiv preprint arXiv:2107.13221},
  year={2021}
}
@inproceedings{choe2020cvpr,
  title={Evaluating Weakly Supervised Object Localization Methods Right},
  author={Choe, Junsuk and Oh, Seong Joon and Lee, Seungho and Chun, Sanghyuk and Akata, Zeynep and Shim, Hyunjung},
  year = {2020},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  note = {to appear},
  pubstate = {published},
  tppubtype = {inproceedings}
}
@article{wsol_eval_journal_submission,
  title={Evaluation for Weakly Supervised Object Localization: Protocol, Metrics, and Datasets},
  author={Choe, Junsuk and Oh, Seong Joon and Chun, Sanghyuk and Akata, Zeynep and Shim, Hyunjung},
  journal={arXiv preprint arXiv:2007.04178},
  year={2020}
}
Owner
Jeesoo Kim
Ph.D candidate at Seoul National University
Jeesoo Kim
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022