2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

Overview

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, & Ling Shao.

This repository provides code for paper"Progressively Normalized Self-Attention Network for Video Polyp Segmentation" published at the MICCAI-2021 conference (arXiv Version | 中文版). If you have any questions about our paper, feel free to contact me. And if you like our PNS-Net or evaluation toolbox for your personal research, please cite this paper (BibTeX).

Features

  • Hyper Real-time Speed: Our method, named Progressively Normalized Self-Attention Network (PNS-Net), can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single NVIDIA RTX 2080 GPU without any post-processing techniques (e.g., Dense-CRF).
  • Plug-and-Play Module: The proposed core module, termed Normalized Self-attention (NS), utilizes channel split,query-dependent, and normalization rules to reduce the computational cost and improve the accuracy, respectively. Note that this module can be flexibly plugged into any framework customed.
  • Cutting-edge Performance: Experiments on three challenging video polyp segmentation (VPS) datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance.
  • One-key Evaluation Toolbox: We release the first one-key evaluation toolbox in the VPS field.

1.1. 🔥 NEWS 🔥 :

  • [2021/06/25] 🔥 Our paper have been elected to be honred a MICCAI Student Travel Award.
  • [2021/06/19] 🔥 A short introduction of our paper is available on my YouTube channel (2min).
  • [2021/06/18] Release the inference code! The whole project will be available at the time of MICCAI-2021.
  • [2021/06/18] The Chinese translation of our paper is coming, please enjoy it [pdf].
  • [2021/05/27] Uploading the training/testing dataset, snapshot, and benchmarking results.
  • [2021/05/14] Our work is provisionally accepted at MICCAI 2021. Many thanks to my collaborator Yu-Cheng Chou and supervisor Prof. Deng-Ping Fan.
  • [2021/03/10] Create repository.

1.2. Table of Contents

Table of contents generated with markdown-toc

1.3. State-of-the-art Approaches

  1. "PraNet: Parallel Reverse Attention Network for Polyp Segmentation" MICCAI, 2020. doi: https://arxiv.org/pdf/2006.11392.pdf
  2. "Adaptive context selection for polyp segmentation" MICCAI, 2020. doi: https://link.springer.com/chapter/10.1007/978-3-030-59725-2_25
  3. "Resunet++: An advanced architecture for medical image segmentation" IEEE ISM, 2019 doi: https://arxiv.org/pdf/1911.07067.pdf
  4. "Unet++: A nested u-net architecture for medical image segmentation" IEEE TMI, 2019 doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329239/
  5. "U-Net: Convolutional networks for biomed- ical image segmentation" MICCAI, 2015. doi: https://arxiv.org/pdf/1505.04597.pdf

2. Overview

2.1. Introduction

Existing video polyp segmentation (VPS) models typically employ convolutional neural networks (CNNs) to extract features. However, due to their limited receptive fields, CNNs can not fully exploit the global temporal and spatial information in successive video frames, resulting in false-positive segmentation results. In this paper, we propose the novel PNS-Net (Progressively Normalized Self-attention Network), which can efficiently learn representations from polyp videos with real-time speed (~140fps) on a single RTX 2080 GPU and no post-processing.

Our PNS-Net is based solely on a basic normalized self-attention block, dispensing with recurrence and CNNs entirely. Experiments on challenging VPS datasets demonstrate that the proposed PNS-Net achieves state-of-the-art performance. We also conduct extensive experiments to study the effectiveness of the channel split, soft-attention, and progressive learning strategy. We find that our PNS-Net works well under different settings, making it a promising solution to the VPS task.

2.2. Framework Overview


Figure 1: Overview of the proposed PNS-Net, including the normalized self-attention block (see § 2.1) with a stacked (×R) learning strategy. See § 2 in the paper for details.

2.3. Qualitative Results


Figure 2: Qualitative Results.

3. Proposed Baseline

3.1. Training/Testing

The training and testing experiments are conducted using PyTorch with a single GeForce RTX 2080 GPU of 8 GB Memory.

  1. Configuring your environment (Prerequisites):

    Note that PNS-Net is only tested on Ubuntu OS with the following environments. It may work on other operating systems as well but we do not guarantee that it will.

    • Creating a virtual environment in terminal:

    conda create -n PNSNet python=3.6.

    • Installing necessary packages PyTorch 1.1:
    conda create -n PNSNet python=3.6
    conda activate PNSNet
    conda install pytorch=1.1.0 torchvision -c pytorch
    pip install tensorboardX tqdm Pillow==6.2.2
    pip install git+https://github.com/pytorch/[email protected]
    • Our core design is built on CUDA OP with torchlib. Please ensure the base CUDA toolkit version is 10.x (not at conda env), and then build the NS Block:
    cd ./lib/PNS
    python setup.py build develop
  2. Downloading necessary data:

  3. Training Configuration:

    • First, run python MyTrain_Pretrain.py in the terminal for pretraining, and then, run python MyTrain_finetune.py for finetuning.

    • Just enjoy it! Finish it and the snapshot would save in ./snapshot/PNS-Net/*.

  4. Testing Configuration:

    • After you download all the pre-trained model and testing dataset, just run MyTest_finetune.py to generate the final prediction map in ./res.

    • Just enjoy it!

    • The prediction results of all competitors and our PNS-Net can be found at Google Drive (7MB).

3.2 Evaluating your trained model:

One-key evaluation is written in MATLAB code (link), please follow this the instructions in ./eval/main_VPS.m and just run it to generate the evaluation results in ./eval-Result/.

4. Citation

Please cite our paper if you find the work useful:

@inproceedings{ji2021pnsnet,
  title={Progressively Normalized Self-Attention Network for Video Polyp Segmentation},
  author={Ji, Ge-Peng and Chou, Yu-Cheng and Fan, Deng-Ping and Chen, Geng and Jha, Debesh and Fu, Huazhu and Shao, Ling},
  booktitle={MICCAI},
  year={2021}
}

5. TODO LIST

If you want to improve the usability or any piece of advice, please feel free to contact me directly (E-mail).

  • Support NVIDIA APEX training.

  • Support different backbones ( VGGNet, ResNet, ResNeXt, iResNet, and ResNeSt etc.)

  • Support distributed training.

  • Support lightweight architecture and real-time inference, like MobileNet, SqueezeNet.

  • Support distributed training

  • Add more comprehensive competitors.

6. FAQ

  1. If the image cannot be loaded on the page (mostly in the domestic network situations).

    Solution Link


7. Acknowledgements

This code is built on SINetV2 (PyTorch) and PyramidCSA (PyTorch). We thank the authors for sharing the codes.

back to top

Owner
Ge-Peng Ji (Daniel)
Computer Vision & Medical Imaging
Ge-Peng Ji (Daniel)
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022