DeepVoxels is an object-specific, persistent 3D feature embedding.

Overview

DeepVoxels

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of an object in a deeplearning framework. At test time, the training set can be discarded, and DeepVoxels can be used to render novel views of the same object.

deepvoxels_video

Usage

Installation

This code was developed in python 3.7 and pytorch 1.0. I recommend to use anaconda for dependency management. You can create an environment with name "deepvoxels" with all dependencies like so:

conda env create -f environment.yml

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • data_util.py and util.py contain utility functions.
  • run_deepvoxels.py contains the training and testing code as well as setting up the dataset, dataloading, command line arguments etc.
  • deep_voxels.py contains the core DeepVoxels model.
  • custom_layers.py contains implementations of the integration and occlusion submodules.
  • projection.py contains utility functions for 3D and projective geometry.

Data

The datasets have been rendered from a set of high-quality 3D scans of a variety of objects. The datasets are available for download here. Each object has its own directory, which is the directory that the "data_root" command-line argument of the run_deepvoxels.py script is pointed to.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

The code also reads an "intrinsics.txt" file from the dataset directory. This file is expected to be structured as follows:

f cx cy
origin_x origin_y origin_z
near_plane (if 0, defaults to sqrt(3)/2)
scale
img_height img_width

The focal length, cx and cy are in pixels. (origin_x, origin_y, origin_z) denotes the origin of the voxel grid in world coordinates. The near plane is also expressed in world units. Per default, each voxel has a sidelength of 1 in world units - the scale is a factor that scales the sidelength of each voxel. Finally, height and width are the resolution of the image.

To create your own dataset, I recommend using the amazing, open-source Colmap. Follow the instructions on the website to install it. I have written a little wrapper in python that will automatically reconstruct a directory of images, and then extract the camera extrinsic & intrinsic camera parameters. It can be used like so:

python colmap_wrapper.py --img_dir [path to directory with images] \
                         --trgt_dir [path where output will be written to] 

To get the scale and origin of the voxel grid as well as the near plane, one has to inspect the reconstructed point cloud and manually edit the intrinsics.txt file written out by colmap_wrapper.py.

Training

  • See python run_deepvoxels.py --help for all train options. Example train call:
python run_deepvoxels.py --train_test train \
                         --data_root [path to directory with dataset] \
                         --logging_root [path to directory where tensorboard summaries and checkpoints should be written to] 

To monitor progress, the training code writes tensorboard summaries every 100 steps into a "runs" subdirectory in the logging_root.

Testing

Example test call:

python run_deepvoxels.py --train_test test \
                         --data_root [path to directory with dataset] ]
                         --logging_root [path to directoy where test output should be written to] \
                         --checkpoint [path to checkpoint]

Misc

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{sitzmann2019deepvoxels,
	author = {Sitzmann, Vincent 
	          and Thies, Justus 
	          and Heide, Felix 
	          and Nie{\ss}ner, Matthias 
	          and Wetzstein, Gordon 
	          and Zollh{\"o}fer, Michael},
	title = {DeepVoxels: Learning Persistent 3D Feature Embeddings},
	booktitle = {Proc. CVPR},
	year={2019}
}

Follow-up work

Check out our new project, Scene Representation Networks, where we replace the voxel grid with a continuous function that naturally generalizes across scenes and smoothly parameterizes scene surfaces!

Submodule "pytorch_prototyping"

The code in the subdirectory "pytorch_prototyping" comes from a little library of custom pytorch modules that I use throughout my research projects. You can find it here.

Other cool projects

Some of the code in this project is based on code from these two very cool papers:

Check them out!

Contact:

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

João 51 Aug 29, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023