KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Overview

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems

License: MIT

This is the implementation of the paper:

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems. Andrea Madotto, Samuel Cahyawijaya, Genta Indra Winata, Yan Xu, Zihan Liu, Zhaojiang Lin, Pascale Fung Findings of EMNLP 2020 [PDF]

If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:

@article{madotto2020learning,
  title={Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems},
  author={Madotto, Andrea and Cahyawijaya, Samuel and Winata, Genta Indra and Xu, Yan and Liu, Zihan and Lin, Zhaojiang and Fung, Pascale},
  journal={arXiv preprint arXiv:2009.13656},
  year={2020}
}

Abstract

Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized systems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via finetuning. We evaluate our solution in five taskoriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.

Knowledge-embedded Dialogue:

During training, the KE dialogues are generated by fulfilling the *TEMPLATE* with the *user goal query* results, and they are used to embed the KB into the model parameter theta. At testing time, the model does not use any external knowledge to generate the correct responses.

Dependencies

We listed our dependencies on requirements.txt, you can install the dependencies by running

❱❱❱ pip install -r requirements.txt

In addition, our code also includes fp16 support with apex. You can find the package from https://github.com/NVIDIA/apex.

Experiments

bAbI-5

Dataset Download the preprocessed dataset and put the zip file inside the ./knowledge_embed/babi5 folder. Extract the zip file by executing

❱❱❱ cd ./knowledge_embed/babi5
❱❱❱ unzip dialog-bAbI-tasks.zip

Generate the delexicalized dialogues from bAbI-5 dataset via

❱❱❱ python3 generate_delexicalization_babi.py

Generate the lexicalized data from bAbI-5 dataset via

❱❱❱ python generate_dialogues_babi5.py --dialogue_path ./dialog-bAbI-tasks/dialog-babi-task5trn_record-delex.txt --knowledge_path ./dialog-bAbI-tasks/dialog-babi-kb-all.txt --output_folder ./dialog-bAbI-tasks --num_augmented_knowledge <num_augmented_knowledge> --num_augmented_dialogue <num_augmented_dialogues> --random_seed 0

Where the maximum <num_augmented_knowledge> is 558 (recommended) and <num_augmented_dialogues> is 264 as it is corresponds to the number of knowledge and number of dialogues in bAbI-5 dataset.

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on bAbI training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/babi5
❱❱❱ python main.py --model_checkpoint gpt2 --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks --n_epochs <num_epoch> --kbpercentage <num_augmented_dialogues>

Notes that the value of --kbpercentage is equal to <num_augmented_dialogues> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py --model_checkpoint <model_checkpoint_folder> --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks

Scoring bAbI-5 To run the scorer for bAbI-5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_BABI5.py --model_checkpoint <model_checkpoint> --dataset BABI --dataset_path ../../knowledge_embed/babi5/dialog-bAbI-tasks --kbpercentage 0

CamRest

Dataset

Download the preprocessed dataset and put the zip file under ./knowledge_embed/camrest folder. Unzip the zip file by executing

❱❱❱ cd ./knowledge_embed/camrest
❱❱❱ unzip CamRest.zip

Generate the delexicalized dialogues from CamRest dataset via

❱❱❱ python3 generate_delexicalization_CAMREST.py

Generate the lexicalized data from CamRest dataset via

❱❱❱ python generate_dialogues_CAMREST.py --dialogue_path ./CamRest/train_record-delex.txt --knowledge_path ./CamRest/KB.json --output_folder ./CamRest --num_augmented_knowledge <num_augmented_knowledge> --num_augmented_dialogue <num_augmented_dialogues> --random_seed 0

Where the maximum <num_augmented_knowledge> is 201 (recommended) and <num_augmented_dialogues> is 156 quite huge as it is corresponds to the number of knowledge and number of dialogues in CamRest dataset.

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on CamRest training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/camrest/
❱❱❱ python main.py --model_checkpoint gpt2 --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest --n_epochs <num_epoch> --kbpercentage <num_augmented_dialogues>

Notes that the value of --kbpercentage is equal to <num_augmented_dialogues> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py --model_checkpoint <model_checkpoint_folder> --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest

Scoring CamRest To run the scorer for bAbI 5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_CAMREST.py --model_checkpoint <model_checkpoint> --dataset CAMREST --dataset_path ../../knowledge_embed/camrest/CamRest --kbpercentage 0

SMD

Dataset

Download the preprocessed dataset and put it under ./knowledge_embed/smd folder.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ unzip SMD.zip

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on SMD training set. Download the checkpoint and put it under ./modeling folder.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ mkdir ./runs
❱❱❱ unzip ./knowledge_embed/smd/SMD_gpt2_graph_False_adj_False_edge_False_unilm_False_flattenKB_False_historyL_1000000000_lr_6.25e-05_epoch_10_weighttie_False_kbpercentage_0_layer_12.zip -d ./runs

You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/smd
❱❱❱ python main.py --dataset SMD --lr 6.25e-05 --n_epochs 10 --kbpercentage 0 --layers 12

Prepare Knowledge-embedded dialogues

Firstly, we need to build databases for SQL query.

❱❱❱ cd ./knowledge_embed/smd
❱❱❱ python generate_dialogues_SMD.py --build_db --split test

Then we generate dialogues based on pre-designed templates by domains. The following command enables you to generate dialogues in weather domain. Please replace weather with navigate or schedule in dialogue_path and domain arguments if you want to generate dialogues in the other two domains. You can also change number of templates used in relexicalization process by changing the argument num_augmented_dialogue.

❱❱❱ python generate_dialogues_SMD.py --split test --dialogue_path ./templates/weather_template.txt --domain weather --num_augmented_dialogue 100 --output_folder ./SMD/test

Adapt fine-tuned GPT-2 model to the test set

❱❱❱ python evaluate_finetune.py --dataset SMD --model_checkpoint runs/SMD_gpt2_graph_False_adj_False_edge_False_unilm_False_flattenKB_False_historyL_1000000000_lr_6.25e-05_epoch_10_weighttie_False_kbpercentage_0_layer_12 --top_k 1 --eval_indices 0,303 --filter_domain ""

You can also speed up the finetuning process by running experiments parallelly. Please modify the GPU setting in #L14 of the code.

❱❱❱ python runner_expe_SMD.py 

MWOZ (2.1)

Dataset

Download the preprocessed dataset and put it under ./knowledge_embed/mwoz folder.

❱❱❱ cd ./knowledge_embed/mwoz
❱❱❱ unzip mwoz.zip

Prepare Knowledge-Embedded dialogues (You can skip this step, if you have downloaded the zip file above)

You can prepare the datasets by running

❱❱❱ bash generate_MWOZ_all_data.sh

The shell script generates the delexicalized dialogues from MWOZ dataset by calling

❱❱❱ python generate_delex_MWOZ_ATTRACTION.py
❱❱❱ python generate_delex_MWOZ_HOTEL.py
❱❱❱ python generate_delex_MWOZ_RESTAURANT.py
❱❱❱ python generate_delex_MWOZ_TRAIN.py
❱❱❱ python generate_redelex_augmented_MWOZ.py
❱❱❱ python generate_MWOZ_dataset.py

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on MWOZ training set. Download the checkpoint and put it under ./modeling folder.

❱❱❱ cd ./knowledge_embed/mwoz
❱❱❱ mkdir ./runs
❱❱❱ unzip ./mwoz.zip -d ./runs

You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/mwoz
❱❱❱ python main.py --model_checkpoint gpt2 --dataset MWOZ_SINGLE --max_history 50 --train_batch_size 6 --kbpercentage 100 --fp16 O2 --gradient_accumulation_steps 3 --balance_sampler --n_epochs 10

OpenDialKG

Getting Started We use neo4j community server edition and apoc library for processing graph data. apoc is used to parallelize the query in neo4j, so that we can process large scale graph faster

Before proceed to the dataset section, you need to ensure that you have neo4j (https://neo4j.com/download-center/#community) and apoc (https://neo4j.com/developer/neo4j-apoc/) installed on your system.

If you are not familiar with CYPHER and apoc syntaxes, you can follow the tutorial in https://neo4j.com/developer/cypher/ and https://neo4j.com/blog/intro-user-defined-procedures-apoc/

Dataset Download the original dataset and put the zip file inside the ./knowledge_embed/opendialkg folder. Extract the zip file by executing

❱❱❱ cd ./knowledge_embed/opendialkg
❱❱❱ unzip https://drive.google.com/file/d/1llH4-4-h39sALnkXmGR8R6090xotE0PE/view?usp=sharing.zip

Generate the delexicalized dialogues from opendialkg dataset via (WARNING: this requires around 12 hours to run)

❱❱❱ python3 generate_delexicalization_DIALKG.py

This script will produce ./opendialkg/dialogkg_train_meta.pt which will be use to generate the lexicalized dialogue. You can then generate the lexicalized dialogue from opendialkg dataset via

❱❱❱ python generate_dialogues_DIALKG.py --random_seed <random_seed> --batch_size 100 --max_iteration <max_iter> --stop_count <stop_count> --connection_string bolt://localhost:7687

This script will produce samples of dialogues at most batch_size * max_iter samples, but in every batch there is a possibility where there is no valid candidate and resulting in less samples. The number of generation is limited by another factor called stop_count which will stop the generation if the number of generated samples is more than equal the specified stop_count. The file will produce 4 files: ./opendialkg/db_count_records_{random_seed}.csv, ./opendialkg/used_count_records_{random_seed}.csv, and ./opendialkg/generation_iteration_{random_seed}.csv which are used for checking the distribution shift of the count in the DB; and ./opendialkg/generated_dialogue_bs100_rs{random_seed}.json which contains the generated samples.

Notes:

  • You might need to change the neo4j password inside generate_delexicalization_DIALKG.py and generate_dialogues_DIALKG.py manually.
  • Because there is a ton of possibility of connection in dialkg, we use sampling method to generate the data, so random seed is crucial if you want to have reproducible result

Fine-tune GPT-2

We provide the checkpoint of GPT-2 model fine-tuned on opendialkg training set. You can also choose to train the model by yourself using the following command.

❱❱❱ cd ./modeling/opendialkg
❱❱❱ python main.py --dataset_path ../../knowledge_embed/opendialkg/opendialkg --model_checkpoint gpt2 --dataset DIALKG --n_epochs 50 --kbpercentage <random_seed> --train_batch_size 8 --valid_batch_size 8

Notes that the value of --kbpercentage is equal to <random_seed> the one that comes from the lexicalization. This parameter is used for selecting the augmentation file to embed into the train dataset.

You can evaluate the model by executing the following script

❱❱❱ python evaluate.py  --model_checkpoint <model_checkpoint_folder> --dataset DIALKG --dataset_path  ../../knowledge_embed/opendialkg/opendialkg

Scoring OpenDialKG To run the scorer for bAbI-5 task model, you can run the following command. Scorer will read all of the result.json under runs folder generated from evaluate.py

python scorer_DIALKG5.py --model_checkpoint <model_checkpoint> --dataset DIALKG  ../../knowledge_embed/opendialkg/opendialkg --kbpercentage 0

Further Details

For the details regarding to the experiments, hyperparameters, and Evaluation results you can find it in the main paper of and suplementary materials of our work.

Owner
CAiRE
CAiRE
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
202 Jan 06, 2023
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023