[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

Contents

Cycle-In-Cycle GANs

| Conference Paper | Extended Paper | Project |
Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Hao Tang1, Dan Xu2, Gaowen Liu3, Wei Wang4, Nicu Sebe1 and Yan Yan3
1University of Trento, 2University of Oxford, 3Texas State University, 4EPFL
The repository offers the official implementation of our paper in PyTorch.

In the meantime, check out our related BMVC 2020 oral paper Bipartite Graph Reasoning GANs for Person Image Generation, ECCV 2020 paper XingGAN for Person Image Generation, and ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

C2GAN Framework

Framework

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/C2GAN
cd C2GAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA TITAN Xp GPUs.

Dataset Preparation

For your convenience we provide download scripts:

bash ./datasets/download_c2gan_dataset.sh RaFD_image_landmark
  • RaFD_image_landmark: 3.0 GB

or you can use ./scripts/convert_pts_to_figure.m to convert the generated pts files to figures.

Prepare the datasets like in this folder after the download has finished. Please cite their paper if you use the data.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., Radboud) with the following script:
bash ./scripts/download_c2gan_model.sh Radboud
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/Radboud --name Radboud_pretrained --model c2gan --which_model_netG unet_256 --which_direction AtoB --dataset_mode aligned --norm batch --gpu_ids 0 --batch 16;

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Train and Test New Models

  • Download a dataset using the previous script (e.g., Radboud).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./train_c2gan.sh
  • To see more intermediate results, check out ./checkpoints/Radboud_c2gan/web/index.html.
  • Test the model:
sh ./test_c2gan.sh
  • The test results will be saved to a html file here: ./results/Radboud_c2gan/latest_test/index.html.

Acknowledgments

This source code is inspired by Pix2pix, and GestureGAN.

Related Projects

BiGraphGAN | XingGAN | GestureGAN | SelectionGAN | Guided-I2I-Translation-Papers

Citation

If you use this code for your research, please cite our paper.

C2GAN

@article{tang2021total,
  title={Total Generate: Cycle in Cycle Generative Adversarial Networks for Generating Human Faces, Hands, Bodies, and Natural Scenes},
  author={Tang, Hao and Sebe, Nicu},
  journal={IEEE Transactions on Multimedia (TMM)},
  year={2021}
}

@inproceedings{tang2019cycleincycle,
  title={Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation},
  author={Tang, Hao and Xu, Dan and Liu, Gaowen and Wang, Wei and Sebe, Nicu and Yan, Yan},
  booktitle={ACM MM},
  year={2019}
}

If you use the original BiGraphGAN, XingGAN, GestureGAN, and SelectionGAN model, please cite the following papers:

BiGraphGAN

@inproceedings{tang2020bipartite,
  title={Bipartite Graph Reasoning GANs for Person Image Generation},
  author={Tang, Hao and Bai, Song and Torr, Philip HS and Sebe, Nicu},
  booktitle={BMVC},
  year={2020}
}

XingGAN

@inproceedings{tang2020xinggan,
  title={XingGAN for Person Image Generation},
  author={Tang, Hao and Bai, Song and Zhang, Li and Torr, Philip HS and Sebe, Nicu},
  booktitle={ECCV},
  year={2020}
}

GestureGAN

@article{tang2019unified,
  title={Unified Generative Adversarial Networks for Controllable Image-to-Image Translation},
  author={Tang, Hao and Liu, Hong and Sebe, Nicu},
  journal={IEEE Transactions on Image Processing (TIP)},
  year={2020}
}

@inproceedings{tang2018gesturegan,
  title={GestureGAN for Hand Gesture-to-Gesture Translation in the Wild},
  author={Tang, Hao and Wang, Wei and Xu, Dan and Yan, Yan and Sebe, Nicu},
  booktitle={ACM MM},
  year={2018}
}

SelectionGAN

@inproceedings{tang2019multi,
  title={Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Wang, Yanzhi and Corso, Jason J and Yan, Yan},
  booktitle={CVPR},
  year={2019}
}

@article{tang2020multi,
  title={Multi-channel attention selection gans for guided image-to-image translation},
  author={Tang, Hao and Xu, Dan and Yan, Yan and Corso, Jason J and Torr, Philip HS and Sebe, Nicu},
  journal={arXiv preprint arXiv:2002.01048},
  year={2020}
}

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


If you can do what you do best and be happy, you're further along in life than most people.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022