Implementing DropPath/StochasticDepth in PyTorch

Related tags

Deep LearningDropPath
Overview
%load_ext memory_profiler

Implementing Stochastic Depth/Drop Path In PyTorch

DropPath is available on glasses my computer vision library!

Introduction

Today we are going to implement Stochastic Depth also known as Drop Path in PyTorch! Stochastic Depth introduced by Gao Huang et al is technique to "deactivate" some layers during training.

Let's take a look at a normal ResNet Block that uses residual connections (like almost all models now).If you are not familiar with ResNet, I have an article showing how to implement it.

Basically, the block's output is added to its input: output = block(input) + input. This is called a residual connection

alt

Here we see four ResnNet like blocks, one after the other.

alt

Stochastic Depth/Drop Path will deactivate some of the block's weight

alt

The idea is to reduce the number of layers/block used during training, saving time and make the network generalize better.

Practically, this means setting to zero the output of the block before adding.

Implementation

Let's start by importing our best friend, torch.

import torch
from torch import nn
from torch import Tensor

We can define a 4D tensor (batch x channels x height x width), in our case let's just send 4 images with one pixel each :)

x = torch.ones((4, 1, 1, 1))

We need a tensor of shape batch x 1 x 1 x 1 that will be used to set some of the elements in the batch to zero, using a given prob. Bernoulli to the rescue!

keep_prob: float = .5
mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    
mask
tensor([[[[0.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Btw, this is equivelant to

mask: Tensor = (torch.rand(x.shape[0], 1, 1, 1) > keep_prob).float()
mask
tensor([[[[1.]]],


        [[[1.]]],


        [[[1.]]],


        [[[1.]]]])

Before we multiply x by the mask we need to divide x by keep_prob to rescale down the inputs activation during training, see cs231n. So

x_scaled : Tensor = x / keep_prob
x_scaled
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

Finally

output: Tensor = x_scaled * mask
output
tensor([[[[2.]]],


        [[[2.]]],


        [[[2.]]],


        [[[2.]]]])

We can put together in a function

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x_scaled: Tensor = x / keep_prob
    return x_scaled * mask

drop_path(x, keep_prob=0.5)
tensor([[[[0.]]],


        [[[0.]]],


        [[[2.]]],


        [[[0.]]]])

We can also do the operation in place

def drop_path(x: Tensor, keep_prob: float = 1.0) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    x.div_(keep_prob)
    x.mul_(mask)
    return x


drop_path(x, keep_prob=0.5)
tensor([[[[2.]]],


        [[[2.]]],


        [[[0.]]],


        [[[0.]]]])

However, we may want to use x somewhere else, and dividing x or mask by keep_prob is the same thing. Let's arrive at the final implementation

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask: Tensor = x.new_empty(x.shape[0], 1, 1, 1).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1, 1, 1))
drop_path(x, keep_prob=0.8)
tensor([[[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]],


        [[[1.2500]]]])

drop_path only works for 2d data, we need to automatically calculate the number of dimensions from the input size to make it work for any data time

def drop_path(x: Tensor, keep_prob: float = 1.0, inplace: bool = False) -> Tensor:
    mask_shape: Tuple[int] = (x.shape[0],) + (1,) * (x.ndim - 1) 
    # remember tuples have the * operator -> (1,) * 3 = (1,1,1)
    mask: Tensor = x.new_empty(mask_shape).bernoulli_(keep_prob)
    mask.div_(keep_prob)
    if inplace:
        x.mul_(mask)
    else:
        x = x * mask
    return x

x = torch.ones((4, 1))
drop_path(x, keep_prob=0.8)
tensor([[0.],
        [0.],
        [0.],
        [0.]])

Let's create a nice DropPath nn.Module

class DropPath(nn.Module):
    def __init__(self, p: float = 0.5, inplace: bool = False):
        super().__init__()
        self.p = p
        self.inplace = inplace

    def forward(self, x: Tensor) -> Tensor:
        if self.training and self.p > 0:
            x = drop_path(x, self.p, self.inplace)
        return x

    def __repr__(self):
        return f"{self.__class__.__name__}(p={self.p})"

    
DropPath()(torch.ones((4, 1)))
tensor([[2.],
        [0.],
        [0.],
        [0.]])

Usage with Residual Connections

We have our DropPath, cool but how do we use it? We need a classic ResNet block, let's implement our good old friend BottleNeckBlock

from torch import nn


class ConvBnAct(nn.Sequential):
    def __init__(self, in_features: int, out_features: int, kernel_size=1):
        super().__init__(
            nn.Conv2d(in_features, out_features, kernel_size=kernel_size, padding=kernel_size // 2),
            nn.BatchNorm2d(out_features),
            nn.ReLU()
        )
         

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        return x + res
    
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28))).shape
torch.Size([1, 64, 28, 28])

To deactivate the block the operation x + res must be equal to res, so our DropPath has to be applied after the block.

class BottleNeck(nn.Module):
    def __init__(self, in_features: int, out_features: int, reduction: int = 4):
        super().__init__()
        self.block = nn.Sequential(
            # wide -> narrow
            ConvBnAct(in_features, out_features // reduction, kernel_size=1),
            # narrow -> narrow
            ConvBnAct( out_features // reduction, out_features // reduction, kernel_size=3),
            # wide -> narrow
            ConvBnAct( out_features // reduction, out_features, kernel_size=1),
        )
        # I am lazy, no shortcut etc
        self.drop_path = DropPath()
        
    def forward(self, x: Tensor) -> Tensor:
        res = x
        x = self.block(x)
        x = self.drop_path(x)
        return x + res
    
BottleNeck(64, 64)(torch.ones((1,64, 28, 28)))
tensor([[[[1.0009, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          ...,
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0134, 1.0034, 1.0034,  ..., 1.0034, 1.0034, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0005, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0421],
          [1.0000, 1.0011, 1.0011,  ..., 1.0011, 1.0011, 1.0247]],

         [[1.0203, 1.0123, 1.0123,  ..., 1.0123, 1.0123, 1.0299],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          ...,
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0005, 1.0005,  ..., 1.0005, 1.0005, 1.0548],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         ...,

         [[1.0011, 1.0180, 1.0180,  ..., 1.0180, 1.0180, 1.0465],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          ...,
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0245],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]],

         [[1.0130, 1.0170, 1.0170,  ..., 1.0170, 1.0170, 1.0213],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          ...,
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0052, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0065],
          [1.0012, 1.0139, 1.0139,  ..., 1.0139, 1.0139, 1.0065]],

         [[1.0103, 1.0181, 1.0181,  ..., 1.0181, 1.0181, 1.0539],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          ...,
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0001, 1.0016, 1.0016,  ..., 1.0016, 1.0016, 1.0231],
          [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000]]]],
       grad_fn=<AddBackward0>)

Tada 🎉 ! Now, randomly, our .block will be completely skipped!


Owner
Francesco Saverio Zuppichini
Computer Vision Engineer @ 🤗 BSc informatics. MSc AI. Artificial Intelligence /Deep Learning Enthusiast & Full Stack developer
Francesco Saverio Zuppichini
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023