RetinaNet-PyTorch - A RetinaNet Pytorch Implementation on remote sensing images and has the similar mAP result with RetinaNet in MMdetection

Overview

🚀 RetinaNet Horizontal Detector Based PyTorch

This is a horizontal detector RetinaNet implementation on remote sensing ship dataset (SSDD).
This re-implemented retinanet has the almost the same mAP(iou=0.25, score_iou=0.15) with the MMdetection.
RetinaNet Detector original paper link is here.

🌟 Performance of the implemented RetinaNet Detector

Detection Performance on Inshore image.

Detection Performance on Offshore image.

🎯 Experiment

The SSDD dataset, well-trained retinanet detector, resnet-50 pretrained model on ImageNet, loss curve, evaluation metrics results are below, you could follow my experiment.

  • SSDD dataset BaiduYun extraction code=pa8j
  • gt labels for eval data set BaiduYun extraction code=vqaw (ground-truth)
  • gt labels for train data set BaiduYun extraction code=datk (train-ground-truth)
  • well-trained retinanet detector weight file BaiduYun extraction code=b0e1
  • pre-trained ImageNet resnet-50 weight file BaiduYun extraction code=mmql
  • evaluation metrics(iou=0.25, score_iou=0.15)
Batch Size Input Size mAP (Mine) mAP (MMdet) Model Parameters
32 416 x 416 0.8828 0.8891 32.2 M
  • Other metrics (Precision/Recall/F1 score)
Precision (Mine) Precision (MMDet) Recall (Mine) Recall (MMdet) F1 score (Mine) F1 score(MMdet)
0.8077 0.8502 0.9062 0.91558 0.8541 0.8817
  • loss curve

  • mAP metrics on training set and val set

  • learning rate curve (using warmup lr rate)

💥 Get Started

Installation

A. Install requirements:

conda create -n retinanet python=3.7
conda activate retinanet
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install -r requirements.txt  

Note: If you meet some troubles about installing environment, you can see the check.txt for more details.

B. Install nms module:

cd utils/HBB_NMS_GPU
make

Demo

A. Set project's data path

you should set project's data path in config.py first.

# config.py
# Note: all the path should be absolute path.  
data_path = r'/$ROOT_PATH/SSDD_data/'  # absolute data root path  
output_path = r'/$ROOT_PATH/Output/'  # absolute model output path  
  
inshore_data_path = r'/$ROOT_PATH/SSDD_data_InShore/'  # absolute Inshore data path  
offshore_data_path = r'/$ROOT_PATH/SSDD_data_OffShore/'  # absolute Offshore data path  

# An example  
$ROOT_PATH
    -SSDD_data/
        -train/  # train set 
	    -*.jpg
	-val/  # val set
	    -*.jpg
	-annotations/  # gt label in json format (for coco evaluation method)  
	    -instances_train.json  
	    -instances_val.json  
	-ground-truth/  
	    -*.txt  # gt label in txt format (for voc evaluation method and evaluae inshore and offshore scence)  
	-train-ground-truth/
	    -*.txt  # gt label in txt format (for voc evaluation method)
    -SSDD_data_InShore/  
        -images/
	    -*.jpg  # inshore scence images
	-ground-truth/
	    -*.txt  # inshore scence gt labels  
    -SSDD_data_OffShore/  
        -images/  
	    -*.jpg  # offshore scence images
	-ground-truth/  
	    -*.txt  # offshore scence gt labels

    -Output/
        -checkpoints/
	    - the path of saving tensorboard log event
	-evaluate/  
	    - the path of saving model detection results for evaluate (coco/voc/inshore/offshore)  

B. you should download the well-trained SSDD Dataset weight file.

# download and put the well-trained pth file in checkpoints/ folder 
# and run the simple inferene script to get detection result  
# you can find the model output predict.jpg in show_result/ folder.  

python show.py --chkpt 54_1595.pth --result_path show_result --pic_name demo1.jpg  

Train

A. Prepare dataset

you should structure your dataset files as shown above.

B. Manual set project's hyper parameters

you should manual set projcet's hyper parameters in config.py

1. data file structure (Must Be Set !)  
   has shown above.  

2. Other settings (Optional)  
   if you want to follow my experiment, dont't change anything.  

C. Train RetinaNet detector on SSDD dataset with pretrianed resnet-50 from scratch

C.1 Download the pre-trained resnet-50 pth file

you should download the pre-trained ImageNet Dataset resnet-50 pth file first and put this pth file in resnet_pretrained_pth/ folder.

C.2 Train RetinaNet Detector on SSDD Dataset with pre-trained pth file

# with batchsize 32 and using voc evaluation method during training for 50 epochs  
python train.py --batch_size 32 --epoch 50 --eval_method voc  
  
# with batchsize 32 and using coco evalutation method during training for 50 epochs  
python train.py --batch_size 32 --epoch 50 --eval_method coco  

Note: If you find classification loss change slowly, please be patient, it's not a mistake.

Evaluation

A. evaluate model performance on val set.

python eval.py --device 0 --evaluate True --FPS False --Offshore False --Inshore False --chkpt 54_1595.pth

B. evaluate model performance on InShore and Offshore sences.

python eval.py --device 0 --evaluate False --FPS False --Offshore True --Inshore True --chkpt 54_1595.pth

C. evaluate model FPS

python eval.py --device 0 --evaluate False --FPS True --Offshore False --Inshore Fasle --chkpt 54_1595.pth

💡 Inferences

Thanks for these great work.
https://github.com/ming71/DAL
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch

Owner
Fang Zhonghao
Fang Zhonghao
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
[NeurIPS'21] Shape As Points: A Differentiable Poisson Solver

Shape As Points (SAP) Paper | Project Page | Short Video (6 min) | Long Video (12 min) This repository contains the implementation of the paper: Shape

394 Dec 30, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022