Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Overview

Open-CyKG

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Journal Paper Google Scholar LinkedIn

Model Description

Open-CyKG is a framework that is constructed using an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured data is canonicalized to build the KG by employing fusion techniques using word embeddings.

Datasets

  • OIE dataset: Malware DB
  • NER dataset: Microsoft Security Bulletins (MSB) and Cyber Threat Intelligence reports (CTI)

For dataset files please refer to the appropiate refrence in the paper.

Code:

Dependencies

  • Compatible with Python 3.x

  • Dependencies can be installed as specified in Block 1 in the respective notebooks.

  • All the code was implemented on Google Colab using GPU. Please ensure that you are using the version as specified in the "Ïnstallion and Drives" block.

  • Make sure to adapt the code based on your dataset and choice of word embeddings.

  • To utlize CRF in NER model using Keras; plase make sure to:

    -- Use tensorFlow version and Keras version:

    -- In tensorflow_backend.py and Optimizer.py write down those 2 liness ---> then restart runtime

      ```
      import tensorflow.compat.v1 as tf
      tf.disable_v2_behavior()
      ```
    

For more details on the how the exact process was carried out and the final hyper-parameters used; please refer to Open-CyKG paper.

Citing:

Please cite Open-CyKG if you use any of this material in your work.

I. Sarhan and M. Spruit, Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph, Knowledge-Based Systems (2021), doi: https://doi.org/10.1016/j.knosys.2021.107524.

@article{SARHAN2021107524,
title = {Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph},
journal = {Knowledge-Based Systems},
volume = {233},
pages = {107524},
year = {2021},
issn = {0950-7051},
doi = {https://doi.org/10.1016/j.knosys.2021.107524},
url = {https://www.sciencedirect.com/science/article/pii/S0950705121007863},
author = {Injy Sarhan and Marco Spruit},
keywords = {Cyber Threat Intelligence, Knowledge Graph, Named Entity Recognition, Open Information Extraction, Attention network},
abstract = {Instant analysis of cybersecurity reports is a fundamental challenge for security experts as an immeasurable amount of cyber information is generated on a daily basis, which necessitates automated information extraction tools to facilitate querying and retrieval of data. Hence, we present Open-CyKG: an Open Cyber Threat Intelligence (CTI) Knowledge Graph (KG) framework that is constructed using an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured data is canonicalized to build the KG by employing fusion techniques using word embeddings. As a result, security professionals can execute queries to retrieve valuable information from the Open-CyKG framework. Experimental results demonstrate that our proposed components that build up Open-CyKG outperform state-of-the-art models.11Our implementation of Open-CyKG is publicly available at https://github.com/IS5882/Open-CyKG.}
}

Implementation Refrences:

  • Contextualized word embediings: link to Flairs word embedding documentation, Hugging face link of all pretrained models https://huggingface.co/transformers/v2.3.0/pretrained_models.html
  • Functions in block 3&9 are originally refrenced from the work of Stanvosky et al. Please refer/cite his work, with exception of some modification in the functions Stanovsky, Gabriel, et al. "Supervised open information extraction." Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018.
  • OIE implements Bahdanau attention (https://arxiv.org/pdf/1409.0473.pdf). Towards Data Science Blog
  • NER refrence blog
  • Knowledge Graph fusion motivated by the work of CESI Vashishth, Shikhar, Prince Jain, and Partha Talukdar. "Cesi: Canonicalizing open knowledge bases using embeddings and side information." Proceedings of the 2018 World Wide Web Conference. 2018..
  • Neo4J was used for Knowledge Graph visualization.

Please cite the appropriate reference(s) in your work

Owner
Injy Sarhan
Injy Sarhan
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022