Stacked Recurrent Hourglass Network for Stereo Matching

Related tags

Deep LearningSRHNet
Overview

SRH-Net: Stacked Recurrent Hourglass

Introduction

This repository is supplementary material of our RA-L submission, which helps reviewers to understand and evaluate the submitted paper. The final version will be released to the community in the future.

architect

For commercial purposes, please contact the authors: [email protected]. If you use PlanarSLAM in an academic work, please cite:

inproceedings{dusrhnet,
  author = {Hongzhi Du, Yanyan Li, Yanbiao Sun, Jigui Zhu and Federico Tombari},
  title = {SRH-Net: Stacked Recurrent Hourglass Network for Stereo Matching},
  year = {2021},
  booktitle = {arXiv preprint arXiv:2105.11587},
 }

Installation

We suggest to create an Anaconda environment and install the dependencies:

conda create -y -n SRHNET python=3.6
conda activate SRHNET
pip install -r requirements.txt

Evaluation on the public datasets

Please download the SceneFLow dataset: "FlyingThings3D", "Driving" and "Monkaa" (clean pass and disparity files).

  -mv all training images (totallty 29 folders) into ${your dataset PATH}/frames_cleanpass/TRAIN/
  -mv all corresponding disparity files (totallty 29 folders) into ${your dataset PATH}/disparity/TRAIN/
  -make sure the following 29 folders are included in the "${your dataset PATH}/disparity/TRAIN/" and "${your dataset PATH}/frames_cleanpass/TRAIN/":
    
    15mm_focallength	35mm_focallength		A			 a_rain_of_stones_x2		B				C
    eating_camera2_x2	eating_naked_camera2_x2		eating_x2		 family_x2			flower_storm_augmented0_x2	flower_storm_augmented1_x2
    flower_storm_x2	funnyworld_augmented0_x2	funnyworld_augmented1_x2	funnyworld_camera2_augmented0_x2	funnyworld_camera2_augmented1_x2	funnyworld_camera2_x2
    funnyworld_x2	lonetree_augmented0_x2		lonetree_augmented1_x2		lonetree_difftex2_x2		  lonetree_difftex_x2		lonetree_winter_x2
    lonetree_x2		top_view_x2			treeflight_augmented0_x2	treeflight_augmented1_x2  	treeflight_x2	

download and extract kitti and kitti2015 datasets.

Evaluation and Prediction

Revise parameter settings and run "myevalution.sh" and "predict.sh" for evaluation and prediction on the SceneFLow dataset and KITTI datasets. Note that the “crop_width” and “crop_height” must be multiple of 16, "max_disp" must be multiple of 4 (default: 192).


Test on your own stereo images

The repo provides the pretrained model for testing. Please extract the .zip file into SRHNet Folder and use the following command to test your stereo images.

python test_img.py --crop_height= image height\
                   --crop_width= image width\
                   --max_disp=192\
                   --leftimg='path/to/left/image'\
                   --rightimg='path/to/left/image'\
                   --resume='path/to/pretrained/model'

As an example, we also provide stereo images that can be tested by using the following command,

python test_img.py --crop_height=384\
                   --crop_width=1248\
                   --max_disp=192\
                   --leftimg='./demo/left12_10.png'\
                   --rightimg='./demo/right12_10.png'\
                   --resume='./finetune2_kitti2015_epoch_8.pth'
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Matthew Colbrook 1 Apr 08, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022