[IJCAI'21] Deep Automatic Natural Image Matting

Overview

Deep Automatic Natural Image Matting [IJCAI-21]

This is the official repository of the paper Deep Automatic Natural Image Matting.

Introduction | Network | AIM-500 | Results | Statement


📆 News

The training code, inference code and the pretrained models will be released soon.

[2021-07-16]: Publish the validation dataset AIM-500. Please follow the readme.txt for details.

Introduction

Different from previous methods only focusing on images with salient opaque foregrounds such as humans and animals, in this paper, we investigate the difficulties when extending the automatic matting methods to natural images with salient transparent/meticulous foregrounds or non-salient foregrounds.

To address the problem, we propose a novel end-to-end matting network, which can predict a generalized trimap for any image of the above types as a unified semantic representation. Simultaneously, the learned semantic features guide the matting network to focus on the transition areas via an attention mechanism.

We also construct a test set AIM-500 that contains 500 diverse natural images covering all types along with manually labeled alpha mattes, making it feasible to benchmark the generalization ability of AIM models. Results of the experiments demonstrate that our network trained on available composite matting datasets outperforms existing methods both objectively and subjectively.

Network

We propose the methods consist of:

  • Improved Backbone for Matting: an advanced max-pooling version of ResNet-34, serves as the backbone for the matting network, pretrained on ImageNet;

  • Unified Semantic Representation: a type-wise semantic representation to replace the traditional trimaps;

  • Guided Matting Process: an attention based mechanism to guide the matting process by leveraging the learned semantic features from the semantic decoder to focus on extracting details only within transition area.

The backbone pretrained on ImageNet and the model pretrained on synthetic matting dataset will be released soon.

Pretrained-backbone Pretrained-model
coming soon coming soon

AIM-500

We propose AIM-500 (Automatic Image Matting-500), the first natural image matting test set, which contains 500 high-resolution real-world natural images from all three types (SO, STM, NS), many categories, and the manually labeled alpha mattes. Some examples and the amount of each category are shown below. The AIM-500 dataset is published now, can be downloaded directly from this link. Please follow the readme.txt for more details.

Portrait Animal Transparent Plant Furniture Toy Fruit
100 200 34 75 45 36 10

Results

We test our network on different types of images in AIM-500 and compare with previous SOTA methods, the results are shown below.

Statement

If you are interested in our work, please consider citing the following:

@inproceedings{ijcai2021-danim,
  title     = {Deep Automatic Natural Image Matting},
  author    = {Li, Jizhizi and Zhang, Jing and Tao, Dacheng},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},
  year      = {2021},
}

This project is under the MIT license. For further questions, please contact [email protected].

Relevant Projects

End-to-end Animal Image Matting
Jizhizi Li, Jing Zhang, Stephen J. Maybank, Dacheng Tao

Owner
Jizhizi_Li
Ph.D. student at the University of Sydney - Artificial Intelligence
Jizhizi_Li
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022