Latent Execution for Neural Program Synthesis

Overview

Latent Execution for Neural Program Synthesis

This repo provides the code to replicate the experiments in the paper

Xinyun Chen, Dawn Song, Yuandong Tian, Latent Execution for Neural Program Synthesis, in NeurIPS 2021.

Paper [arXiv] [NeurIPS]

Prerequisites

PyTorch

Dataset

Sample Usage

  1. To run our full latent program synthesizer (LaSynth):

python run.py --latent_execution --operation_predictor --decoder_self_attention

  1. To run our program synthesizer without partial program execution (NoPartialExecutor):

python run.py --latent_execution --operation_predictor --decoder_self_attention --no_partial_execution

  1. To run the RobustFill model:

python run.py

  1. To run the Property Signatures model:

python run.py --use_properties

Run experiments

In the following we list some important arguments for experiments:

  • --data_folder: path to the dataset.
  • --model_dir: path to the directory that stores the models.
  • --load_model: path to the pretrained model (optional).
  • --eval: adding this command will enable the evaluation mode; otherwise, the model will be trained by default.
  • --num_epochs: number of training epochs. The default value is 10, but usually 1 epoch is enough for a decent performance.
  • --log_interval LOG_INTERVAL: saving checkpoints every LOG_INTERVAL steps.
  • --latent_execution: Enable the model to learn the latent executor module.
  • --no_partial_execution: Enable the model to learn the latent executor module, but this module is not used by the program synthesizer, and only adds to the training loss.
  • --operation_predictor: Enable the model to learn the operation predictor module.
  • --use_properties: Run the Property Signatures baseline.
  • --iterative_retraining_prog_gen: Decode training programs for iterative retraining.

More details can be found in arguments.py.

Citation

If you use the code in this repo, please cite the following paper:

@inproceedings{chen2021latent,
  title={Latent Execution for Neural Program Synthesis},
  author={Chen, Xinyun and Song, Dawn and Tian, Yuandong},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

References

[1] Devlin et al., RobustFill: Neural Program Learning under Noisy I/O, ICML 2017.

[2] Odena and Sutton, Learning to Represent Programs with Property Signatures, ICLR 2020.

[3] Chen et al., Execution-Guided Neural Program Synthesis, ICLR 2019.

Owner
Xinyun Chen
Ph.D. student, UC Berkeley.
Xinyun Chen
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Pixel Transposed Convolutional Networks Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University. Introduction Pixel

Hongyang Gao 95 Jul 24, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022