Benchmarks for semi-supervised domain generalization.

Overview

Semi-Supervised Domain Generalization

This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stochastic StyleMatch. The paper addresses a practical and yet under-studied setting for domain generalization: one needs to use limited labeled data along with abundant unlabeled data gathered from multiple distinct domains to learn a generalizable model. This setting greatly challenges existing domain generalization methods, which are not designed to deal with unlabeled data and are thus less scalable in practice. Our approach, StyleMatch, extends the pseudo-labeling-based FixMatch—a state-of-the-art semi-supervised learning framework—in two crucial ways: 1) a stochastic classifier is designed to reduce overfitting and 2) the two-view consistency learning paradigm in FixMatch is upgraded to a multi-view version with style augmentation as the third complementary view. Two benchmarks are constructed for evaluation. Please see the paper at https://arxiv.org/abs/2106.00592 for more details.

How to setup the environment

This code is built on top of Dassl.pytorch. Please follow the instructions provided in https://github.com/KaiyangZhou/Dassl.pytorch to install the dassl environment, as well as to prepare the datasets, PACS and OfficeHome. The five random labeled-unlabeled splits can be downloaded at the following links: pacs, officehome. The splits need to be extracted to the two datasets' folders. Assume you put the datasets under the directory $DATA, the structure should look like

$DATA/
    pacs/
        images/
        splits/
        splits_ssdg/
    office_home_dg/
        art/
        clipart/
        product/
        real_world/
        splits_ssdg/

The style augmentation is based on AdaIN and the implementation is based on this code https://github.com/naoto0804/pytorch-AdaIN. Please download the weights of the decoder and the VGG from https://github.com/naoto0804/pytorch-AdaIN and put them under a new folder ssdg-benchmark/weights.

How to run StyleMatch

The script is provided in ssdg-benchmark/scripts/StyleMatch/run_ssdg.sh. You need to update the DATA variable that points to the directory where you put the datasets. There are three input arguments: DATASET, NLAB (total number of labels), and CFG. See the tables below regarding how to set the values for these variables.

Dataset NLAB
ssdg_pacs 210 or 105
ssdg_officehome 1950 or 975
CFG Description
v1 FixMatch + stochastic classifier + T_style
v2 FixMatch + stochastic classifier + T_style-only (i.e. no T_strong)
v3 FixMatch + stochastic classifier
v4 FixMatch

v1 refers to StyleMatch, which is our final model. See the config files in configs/trainers/StyleMatch for the detailed settings.

Here we give an example. Say you want to run StyleMatch on PACS under the 10-labels-per-class setting (i.e. 210 labels in total), simply run the following commands in your terminal,

conda activate dassl
cd ssdg-benchmark/scripts/StyleMatch
bash run_ssdg.sh ssdg_pacs 210 v1

In this case, the code will run StyleMatch in four different setups (four target domains), each for five times (five random seeds). You can modify the code to run a single experiment instead of all at once if you have multiple GPUs.

At the end of training, you will have

output/
    ssdg_pacs/
        nlab_210/
            StyleMatch/
                resnet18/
                    v1/ # contains results on four target domains
                        art_painting/ # contains five folders: seed1-5
                        cartoon/
                        photo/
                        sketch/

To show the results, simply do

python parse_test_res.py output/ssdg_pacs/nlab_210/StyleMatch/resnet18/v1 --multi-exp

Citation

If you use this code in your research, please cite our paper

@article{zhou2021stylematch,
    title={Semi-Supervised Domain Generalization with Stochastic StyleMatch},
    author={Zhou, Kaiyang and Loy, Chen Change and Liu, Ziwei},
    journal={arXiv preprint arXiv:2106.00592},
    year={2021}
}
Owner
Kaiyang
Researcher in computer vision and machine learning :)
Kaiyang
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Video-Music Transformer

VMT Video-Music Transformer (VMT) is an attention-based multi-modal model, which generates piano music for a given video. Paper https://arxiv.org/abs/

Chin-Tung Lin 5 Jul 13, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022