An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

Overview

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame is a reinforcement learning environment for simulating attack and defense operations in an abstract network intrusion game. The environment extends the abstract model described in (Elderman et al. 2017). The model constitutes a two-player Markov game between an attacker agent and a defender agent that face each other in a simulated computer network. The reinforcement learning environment exposes an interface to a partially observed Markov decision process (POMDP) model of the Markov game. The interface can be used to train, simulate, and evaluate attack- and defend policies against each other. Moreover, the repository contains code to reproduce baseline results for various reinforcement learning algorithms, including:

  • Tabular Q-learning
  • Neural-fitted Q-learning using the DQN algorithm.
  • REINFORCE with baseline
  • Actor-Critic REINFORCE
  • PPO

Please use this bibtex if you make use of this code in your publications (paper: https://arxiv.org/abs/2009.08120):

@INPROCEEDINGS{Hamm2011:Finding,
AUTHOR="Kim Hammar and Rolf Stadler",
TITLE="Finding Effective Security Strategies through Reinforcement Learning and
{Self-Play}",
BOOKTITLE="International Conference on Network and Service Management (CNSM 2020)
(CNSM 2020)",
ADDRESS="Izmir, Turkey",
DAYS=1,
MONTH=nov,
YEAR=2020,
KEYWORDS="Network Security; Reinforcement Learning; Markov Security Games",
ABSTRACT="We present a method to automatically find security strategies for the use
case of intrusion prevention. Following this method, we model the
interaction between an attacker and a defender as a Markov game and let
attack and defense strategies evolve through reinforcement learning and
self-play without human intervention. Using a simple infrastructure
configuration, we demonstrate that effective security strategies can emerge
from self-play. This shows that self-play, which has been applied in other
domains with great success, can be effective in the context of network
security. Inspection of the converged policies show that the emerged
policies reflect common-sense knowledge and are similar to strategies of
humans. Moreover, we address known challenges of reinforcement learning in
this domain and present an approach that uses function approximation, an
opponent pool, and an autoregressive policy representation. Through
evaluations we show that our method is superior to two baseline methods but
that policy convergence in self-play remains a challenge."
}

Publications

Table of Contents

Design

Included Environments

A rich set of configurations of the Markov game are registered as openAI gym environments. The environments are specified and implemented in gym_idsgame/envs/idsgame_env.py see also gym_idsgame/__init__.py.

minimal_defense

This is an environment where the agent is supposed to play the attacker in the Markov game and the defender is following the defend_minimal baseline defense policy. The defend_minimal policy entails that the defender will always defend the attribute with the minimal value out of all of its neighbors.

Registered configurations:

  • idsgame-minimal_defense-v0
  • idsgame-minimal_defense-v1
  • idsgame-minimal_defense-v2
  • idsgame-minimal_defense-v3
  • idsgame-minimal_defense-v4
  • idsgame-minimal_defense-v5
  • idsgame-minimal_defense-v6
  • idsgame-minimal_defense-v7
  • idsgame-minimal_defense-v8
  • idsgame-minimal_defense-v9
  • idsgame-minimal_defense-v10
  • idsgame-minimal_defense-v11
  • idsgame-minimal_defense-v12
  • idsgame-minimal_defense-v13
  • idsgame-minimal_defense-v14
  • idsgame-minimal_defense-v15
  • idsgame-minimal_defense-v16
  • idsgame-minimal_defense-v17
  • idsgame-minimal_defense-v18
  • idsgame-minimal_defense-v19
  • idsgame-minimal_defense-v20

maximal_attack

This is an environment where the agent is supposed to play the defender and the attacker is following the attack_maximal baseline attack policy. The attack_maximal policy entails that the attacker will always attack the attribute with the maximum value out of all of its neighbors.

Registered configurations:

  • idsgame-maximal_attack-v0
  • idsgame-maximal_attack-v1
  • idsgame-maximal_attack-v2
  • idsgame-maximal_attack-v3
  • idsgame-maximal_attack-v4
  • idsgame-maximal_attack-v5
  • idsgame-maximal_attack-v6
  • idsgame-maximal_attack-v7
  • idsgame-maximal_attack-v8
  • idsgame-maximal_attack-v9
  • idsgame-maximal_attack-v10
  • idsgame-maximal_attack-v11
  • idsgame-maximal_attack-v12
  • idsgame-maximal_attack-v13
  • idsgame-maximal_attack-v14
  • idsgame-maximal_attack-v15
  • idsgame-maximal_attack-v16
  • idsgame-maximal_attack-v17
  • idsgame-maximal_attack-v18
  • idsgame-maximal_attack-v19
  • idsgame-maximal_attack-v20

random_attack

This is an environment where the agent is supposed to play as the defender and the attacker is following a random baseline attack policy.

Registered configurations:

  • idsgame-random_attack-v0
  • idsgame-random_attack-v1
  • idsgame-random_attack-v2
  • idsgame-random_attack-v3
  • idsgame-random_attack-v4
  • idsgame-random_attack-v5
  • idsgame-random_attack-v6
  • idsgame-random_attack-v7
  • idsgame-random_attack-v8
  • idsgame-random_attack-v9
  • idsgame-random_attack-v10
  • idsgame-random_attack-v11
  • idsgame-random_attack-v12
  • idsgame-random_attack-v13
  • idsgame-random_attack-v14
  • idsgame-random_attack-v15
  • idsgame-random_attack-v16
  • idsgame-random_attack-v17
  • idsgame-random_attack-v18
  • idsgame-random_attack-v19
  • idsgame-random_attack-v20

random_defense

An environment where the agent is supposed to play as the attacker and the defender is following a random baseline defense policy.

Registered configurations:

  • idsgame-random_defense-v0
  • idsgame-random_defense-v1
  • idsgame-random_defense-v2
  • idsgame-random_defense-v3
  • idsgame-random_defense-v4
  • idsgame-random_defense-v5
  • idsgame-random_defense-v6
  • idsgame-random_defense-v7
  • idsgame-random_defense-v8
  • idsgame-random_defense-v9
  • idsgame-random_defense-v10
  • idsgame-random_defense-v11
  • idsgame-random_defense-v12
  • idsgame-random_defense-v13
  • idsgame-random_defense-v14
  • idsgame-random_defense-v15
  • idsgame-random_defense-v16
  • idsgame-random_defense-v17
  • idsgame-random_defense-v18
  • idsgame-random_defense-v19
  • idsgame-random_defense-v20

two_agents

This is an environment where neither the attacker nor defender is part of the environment, i.e. it is intended for 2-agent simulations or RL training. In the experiments folder you can see examples of using this environment for training PPO-attacker vs PPO-defender, DQN-attacker vs REINFORCE-defender, etc..

Registered configurations:

  • idsgame-v0
  • idsgame-v1
  • idsgame-v2
  • idsgame-v3
  • idsgame-v4
  • idsgame-v5
  • idsgame-v6
  • idsgame-v7
  • idsgame-v8
  • idsgame-v9
  • idsgame-v10
  • idsgame-v11
  • idsgame-v12
  • idsgame-v13
  • idsgame-v14
  • idsgame-v15
  • idsgame-v16
  • idsgame-v17
  • idsgame-v18
  • idsgame-v19
  • idsgame-v20

Requirements

  • Python 3.5+
  • OpenAI Gym
  • NumPy
  • Pyglet (OpenGL 3D graphics)
  • GPU for 3D graphics acceleration (optional)
  • jsonpickle (for configuration files)
  • torch (for baseline algorithms)

Installation & Tests

# install from pip
pip install gym-idsgame==1.0.12
# local install from source
$ pip install -e gym-idsgame
# force upgrade deps
$ pip install -e gym-idsgame --upgrade

# git clone and install from source
git clone https://github.com/Limmen/gym-idsgame
cd gym-idsgame
pip3 install -e .

# run unit tests
pytest

# run it tests
cd experiments
make tests

Usage

The environment can be accessed like any other OpenAI environment with gym.make. Once the environment has been created, the API functions step(), reset(), render(), and close() can be used to train any RL algorithm of your preference.

import gym
from gym_idsgame.envs import IdsGameEnv
env_name = "idsgame-maximal_attack-v3"
env = gym.make(env_name)

The environment ships with implementation of several baseline algorithms, e.g. the tabular Q(0) algorithm, see the example code below.

import gym
from gym_idsgame.agents.training_agents.q_learning.q_agent_config import QAgentConfig
from gym_idsgame.agents.training_agents.q_learning.tabular_q_learning.tabular_q_agent import TabularQAgent
random_seed = 0
util.create_artefact_dirs(default_output_dir(), random_seed)
q_agent_config = QAgentConfig(gamma=0.999, alpha=0.0005, epsilon=1, render=False, eval_sleep=0.9,
                              min_epsilon=0.01, eval_episodes=100, train_log_frequency=100,
                              epsilon_decay=0.9999, video=True, eval_log_frequency=1,
                              video_fps=5, video_dir=default_output_dir() + "/results/videos/" + str(random_seed), num_episodes=20001,
                              eval_render=False, gifs=True, gif_dir=default_output_dir() + "/results/gifs/" + str(random_seed),
                              eval_frequency=1000, attacker=True, defender=False, video_frequency=101,
                              save_dir=default_output_dir() + "/results/data/" + str(random_seed))
env_name = "idsgame-minimal_defense-v2"
env = gym.make(env_name, save_dir=default_output_dir() + "/results/data/" + str(random_seed))
attacker_agent = TabularQAgent(env, q_agent_config)
attacker_agent.train()
train_result = attacker_agent.train_result
eval_result = attacker_agent.eval_result

Manual Play

You can run the environment in a mode of "manual control" as well:

from gym_idsgame.agents.manual_agents.manual_defense_agent import ManualDefenseAgent
random_seed = 0
env_name = "idsgame-random_attack-v2"
env = gym.make(env_name)
ManualDefenseAgent(env.idsgame_config)

Baseline Experiments

The experiments folder contains results, hyperparameters and code to reproduce reported results using this environment. For more information about each individual experiment, see this README.

Clean All Experiment Results

cd experiments # cd into experiments folder
make clean

Run All Experiment Results (Takes a long time)

cd experiments # cd into experiments folder
make all

Run All Experiments For a specific environment (Takes a long time)

cd experiments # cd into experiments folder
make v0

Run a specific experiment

cd experiments/training/v0/random_defense/tabular_q_learning/ # cd into the experiment folder
make run

Clean a specific experiment

cd experiments/training/v0/random_defense/tabular_q_learning/ # cd into the experiment folder
make clean

Start tensorboard for a specifc experiment

cd experiments/training/v0/random_defense/tabular_q_learning/ # cd into the experiment folder
make tensorboard

Fetch Baseline Experiment Results

By default when cloning the repo the experiment results are not included, to fetch the experiment results, install and setup git-lfs then run:

git lfs fetch --all
git lfs pull

Author & Maintainer

Kim Hammar [email protected]

Copyright and license

LICENSE

MIT

(C) 2020, Kim Hammar

Owner
Kim Hammar
PhD @KTH, ML, Distributed systems, security & stuff. Previously @logicalclocks, Allstate, Ericsson.
Kim Hammar
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023