WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

Related tags

Deep LearningWPPNets
Overview

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

This code belongs to the paper [1] available at https://arxiv.org/abs/2201.08157. Please cite the paper, if you use this code.

The paper [1] is The repository contains an implementation of WPPNets as introduced in [1]. It contains scripts for reproducing the numerical example Texture superresolution in Section 5.2.

Moreover, the file wgenpatex.py is adapted from [2] available at https://github.com/johertrich/Wasserstein_Patch_Prior and is adapted from [3]. Furthermore, the folder model is adapted from [5] available at https://github.com/hellloxiaotian/ACNet.

The folders test_img and training_img contain parts of the textures from [4].

For questions and bug reports, please contact Fabian Altekrueger (fabian.altekrueger(at)hu-berlin.de).

CONTENTS

  1. REQUIREMENTS
  2. USAGE AND EXAMPLES
  3. REFERENCES

1. REQUIREMENTS

The code requires several Python packages. We tested the code with Python 3.9.7 and the following package versions:

  • pytorch 1.10.0
  • matplotlib 3.4.3
  • numpy 1.21.2
  • pykeops 1.5

Usually the code is also compatible with some other versions of the corresponding Python packages.

2. USAGE AND EXAMPLES

You can start the training of the WPPNet by calling the scripts. If you want to load the existing network, please set retrain to False. Checkpoints are saved automatically during training such that the progress of the reconstructions is observable. Feel free to vary the parameters and see what happens.

TEXTURE GRASS

The script run_grass.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] grass which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

TEXTURE FLOOR

The script run_floor.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] Floor which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

3. REFERENCES

[1] F. Altekrueger, J. Hertrich.
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution.
ArXiv Preprint#2201.08157

[2] J. Hertrich, A. Houdard and C. Redenbach.
Wasserstein Patch Prior for Image Superresolution.
ArXiv Preprint#2109.12880

[3] A. Houdard, A. Leclaire, N. Papadakis and J. Rabin.
Wasserstein Generative Models for Patch-based Texture Synthesis.
ArXiv Preprint#2007.03408

[4] G. Kylberg.
The Kylberg texture dataset v. 1.0.
Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, 2011

[5] C. Tian, Y. Xu, W. Zuo, C.-W. Lin, and D. Zhang.
Asymmetric CNN for image superresolution.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.

Owner
Fabian Altekrueger
Fabian Altekrueger
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022