Time ranges with python

Overview

Discord

Badges
Build Python package semantic-release PyPI Read the Docs
Tests coverage pre-commit
Standards SemVer 2.0.0 Conventional Commits
Code Code style: black Imports: isort Checked with mypy
Repo GitHub issues GitHub stars GitHub license All Contributors Contributor Covenant

timeranges

Time ranges.

Read the Docs

Installation

pip

timeranges is available on pip:

pip install timeranges

GitHub

You can also install the latest version of the code directly from GitHub:

pip install git+git://github.com/MicaelJarniac/timeranges

Usage

For more examples, see the full documentation.

10:00" time_range = TimeRange(time(0), time(10)) # Check if these times are contained in `time_range` assert time(0) in time_range assert time(5) in time_range assert time(10) in time_range # Check if these times aren't contained in `time_range` assert time(10, 0, 1) not in time_range assert time(11) not in time_range assert time(20) not in time_range time_range_2 = TimeRange(time(15), time(20)) time_ranges = TimeRanges([time_range, time_range_2]) assert time(0) in time_ranges assert time(5) in time_ranges assert time(10) in time_ranges assert time(12) not in time_ranges assert time(15) in time_ranges assert time(17) in time_ranges assert time(20) in time_ranges assert time(22) not in time_ranges ">
from datetime import time

from timeranges import TimeRange, TimeRanges, WeekRange, Weekday


# Create a `TimeRange` instance with the interval "0:00 -> 10:00"
time_range = TimeRange(time(0), time(10))

# Check if these times are contained in `time_range`
assert time(0) in time_range
assert time(5) in time_range
assert time(10) in time_range

# Check if these times aren't contained in `time_range`
assert time(10, 0, 1) not in time_range
assert time(11) not in time_range
assert time(20) not in time_range


time_range_2 = TimeRange(time(15), time(20))
time_ranges = TimeRanges([time_range, time_range_2])

assert time(0) in time_ranges
assert time(5) in time_ranges
assert time(10) in time_ranges
assert time(12) not in time_ranges
assert time(15) in time_ranges
assert time(17) in time_ranges
assert time(20) in time_ranges
assert time(22) not in time_ranges

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

More details can be found in CONTRIBUTING.

Contributors

License

MIT

Created from cookiecutter-python-project.

Comments
  • fix: proper handling with empty structures

    fix: proper handling with empty structures

    As presented in https://github.com/tractian/tractian-python-sdk/issues/30#issuecomment-993901186,

    • empty dictionary in day_ranges means all days, with this, any datetime should return True in __contains__
    • empty list in time_ranges means all hours, with this, any datetime at the same weekday should return True in __contains__ The actual PR is a suggestion to this behavior works, which is not working properly.

    Examples of misleading behavior:

    • Datetime in a weekday with empty list as time_ranges image
    • Datetime not in a empty dict as day_ranges image
    opened by lucascust2 1
  • docs: add MicaelJarniac as a contributor for bug, code, doc, example, ideas, maintenance, projectManagement, review, tool, test

    docs: add MicaelJarniac as a contributor for bug, code, doc, example, ideas, maintenance, projectManagement, review, tool, test

    Add @MicaelJarniac as a contributor for bug, code, doc, example, ideas, maintenance, projectManagement, review, tool, test.

    This was requested by MicaelJarniac in this comment

    opened by allcontributors[bot] 0
  • Fix public API

    Fix public API

    On VS Code, if I type

    from timeranges import
    

    it doesn't auto-complete.

    Something about the way I'm "exporting" the public items on __init__.py isn't quite right.

    bug 
    opened by MicaelJarniac 0
  • Create a method for getting a fully-filled object

    Create a method for getting a fully-filled object

    Something like TimeRanges.full() that'd return TimeRanges([TimeRange()]), and WeekRange.full() that'd return WeekRange({Weekday.MONDAY: TimeRanges.full(), ...}) (with all days of the week).

    enhancement 
    opened by MicaelJarniac 0
  • Make `TimeRanges` and `WeekRange` behave more like native collections

    Make `TimeRanges` and `WeekRange` behave more like native collections

    TimeRanges could behave like a list, and WeekRange like a dict.

    https://docs.python.org/3/reference/datamodel.html#emulating-container-types

    • [ ] __bool__
    enhancement 
    opened by MicaelJarniac 1
  • Compare multiple times at once

    Compare multiple times at once

    assert (time(...), time(...)) in TimeRange(...)
    assert (time(...), time(...)) in TimeRanges(...)
    assert (datetime(...), datetime(...)) in WeekRange(...)
    
    enhancement 
    opened by MicaelJarniac 0
Releases(v1.0.2)
Owner
Micael Jarniac
Micael Jarniac
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

48 Dec 21, 2022
Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

Nicolai Haaber Junge 1 Oct 20, 2021
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023
An orchestration platform for the development, production, and observation of data assets.

Dagster An orchestration platform for the development, production, and observation of data assets. Dagster lets you define jobs in terms of the data f

Dagster 6.2k Jan 08, 2023
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
The Dash Enterprise App Gallery "Oil & Gas Wells" example

This app is based on the Dash Enterprise App Gallery "Oil & Gas Wells" example. For more information and more apps see: Dash App Gallery See the Dash

Austin Caudill 1 Nov 08, 2021
Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Processo de ETL (extração, transformação, carregamento) realizado pela equipe no projeto final do curso da Soul Code Academy.

Débora Mendes de Azevedo 1 Feb 03, 2022
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

MIR Cheatsheet - Survival Guidebook for MIR Researchers in the Lab

SeungHeonDoh 3 Jul 02, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
Anomaly Detection with R

AnomalyDetection R package AnomalyDetection is an open-source R package to detect anomalies which is robust, from a statistical standpoint, in the pre

Twitter 3.5k Dec 27, 2022