Clean Machine Learning, a Coding Kata

Overview

Kata: Clean Machine Learning From Dirty Code

First, open the Kata in Google Colab (or else download it)

You can clone this project and launch jupyter-notebook, or use the files in Google Colab here:

You may want to do File > Save a copy in Drive... in Colab to edit your own copy of the file.


Kata 1: Refactor Dirty ML Code into Pipeline

Let's convert dirty machine learning code into clean code using a Pipeline - which is the Pipe and Filter Design Pattern for Machine Learning.

At first you may still wonder why using this Design Patterns is good. You'll realize just how good it is in the 2nd Clean Machine Learning Kata when you'll do AutoML. Pipelines will give you the ability to easily manage the hyperparameters and the hyperparameter space, on a per-step basis. You'll also have the good code structure for training, saving, reloading, and deploying using any library you want without hitting a wall when it'll come to serializing your whole trained pipeline for deploying in prod.

The Dataset

It'll be downloaded automatically for you in the code below.

We're using a Human Activity Recognition (HAR) dataset captured using smartphones. The dataset can be found on the UCI Machine Learning Repository.

The task

Classify the type of movement amongst six categories from the phones' sensor data:

  • WALKING,
  • WALKING_UPSTAIRS,
  • WALKING_DOWNSTAIRS,
  • SITTING,
  • STANDING,
  • LAYING.

Video dataset overview

Follow this link to see a video of the 6 activities recorded in the experiment with one of the participants:

Video of the experiment

[Watch video]

Details about the input data

The dataset's description goes like this:

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used.

Reference:

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

That said, I will use the almost raw data: only the gravity effect has been filtered out of the accelerometer as a preprocessing step for another 3D feature as an input to help learning. If you'd ever want to extract the gravity by yourself, you could use the following Butterworth Low-Pass Filter (LPF) and edit it to have the right cutoff frequency of 0.3 Hz which is a good frequency for activity recognition from body sensors.

Here is how the 3D data cube looks like. So we'll have a train and a test data cube, and might create validation data cubes as well:

So we have 3D data of shape [batch_size, time_steps, features]. If this and the above is still unclear to you, you may want to learn more on the 3D shape of time series data.

Loading the Dataset

import urllib
import os

def download_import(filename):
    with open(filename, "wb") as f:
        # Downloading like that is needed because of Colab operating from a Google Drive folder that is only "shared with you".
        url = 'https://raw.githubusercontent.com/Neuraxio/Kata-Clean-Machine-Learning-From-Dirty-Code/master/{}'.format(filename)
        f.write(urllib.request.urlopen(url).read())

try:
    import google.colab
    download_import("data_loading.py")
    !mkdir data;
    download_import("data/download_dataset.py")
    print("Downloaded .py files: dataset loaders.")
except:
    print("No dynamic .py file download needed: not in a Colab.")

DATA_PATH = "data/"
!pwd && ls
os.chdir(DATA_PATH)
!pwd && ls
!python download_dataset.py
!pwd && ls
os.chdir("..")
!pwd && ls
DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"
print("\n" + "Dataset is now located at: " + DATASET_PATH)
# install neuraxle if needed:
try:
    import neuraxle
    assert neuraxle.__version__ == '0.3.4'
except:
    !pip install neuraxle==0.3.4
# Finally load dataset!
from data_loading import load_all_data
X_train, y_train, X_test, y_test = load_all_data()
print("Dataset loaded!")

Let's now define and execute our ugly code:

You don't need to change the functions here just below. We'll rather code this again after in the next section.

import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier


def get_fft_peak_infos(real_fft, time_bins_axis=-2):
    """
    Extract the indices of the bins with maximal amplitude, and the corresponding amplitude values.

    :param fft: real magnitudes of an fft. It could be of shape [N, bins, features].
    :param time_bins_axis: axis of the frequency bins (e.g.: time axis before fft).
    :return: Two arrays without bins. One is an int, the other is a float. Shape: ([N, features], [N, features])
    """
    peak_bin = np.argmax(real_fft, axis=time_bins_axis)
    peak_bin_val = np.max(real_fft, axis=time_bins_axis)
    return peak_bin, peak_bin_val


def fft_magnitudes(data_inputs, time_axis=-2):
    """
    Apply a Fast Fourier Transform operation to analyze frequencies, and return real magnitudes.
    The bins past the half (past the nyquist frequency) are discarded, which result in shorter time series.

    :param data_inputs: ND array of dimension at least 1. For instance, this could be of shape [N, time_axis, features]
    :param time_axis: axis along which the time series evolve
    :return: real magnitudes of the data_inputs. For instance, this could be of shape [N, (time_axis / 2) + 1, features]
             so here, we have `bins = (time_axis / 2) + 1`.
    """
    fft = np.fft.rfft(data_inputs, axis=time_axis)
    real_fft = np.absolute(fft)
    return real_fft


def get_fft_features(x_data):
    """
    Will featurize data with an FFT.

    :param x_data: 3D time series of shape [batch_size, time_steps, sensors]
    :return: featurized time series with FFT of shape [batch_size, features]
    """
    real_fft = fft_magnitudes(x_data)
    flattened_fft = real_fft.reshape(real_fft.shape[0], -1)
    peak_bin, peak_bin_val = get_fft_peak_infos(real_fft)
    return flattened_fft, peak_bin, peak_bin_val


def featurize_data(x_data):
    """
    Will convert 3D time series of shape [batch_size, time_steps, sensors] to shape [batch_size, features]
    to prepare data for machine learning.

    :param x_data: 3D time series of shape [batch_size, time_steps, sensors]
    :return: featurized time series of shape [batch_size, features]
    """
    print("Input shape before feature union:", x_data.shape)

    flattened_fft, peak_bin, peak_bin_val = get_fft_features(x_data)
    mean = np.mean(x_data, axis=-2)
    median = np.median(x_data, axis=-2)
    min = np.min(x_data, axis=-2)
    max = np.max(x_data, axis=-2)

    featurized_data = np.concatenate([
        flattened_fft,
        peak_bin,
        peak_bin_val,
        mean,
        median,
        min,
        max,
    ], axis=-1)

    print("Shape after feature union, before classification:", featurized_data.shape)
    return featurized_data

Let's now use the ugly code to do ugly machine learning with it.

Fit:

# Shape: [batch_size, time_steps, sensor_features]
X_train_featurized = featurize_data(X_train)
# Shape: [batch_size, remade_features]

classifier = DecisionTreeClassifier()
classifier.fit(X_train_featurized, y_train)

Predict:

# Shape: [batch_size, time_steps, sensor_features]
X_test_featurized = featurize_data(X_test)
# Shape: [batch_size, remade_features]

y_pred = classifier.predict(X_test_featurized)
print("Shape at output after classification:", y_pred.shape)
# Shape: [batch_size]

Eval:

accuracy = accuracy_score(y_pred=y_pred, y_true=y_test)
print("Accuracy of ugly pipeline code:", accuracy)

Cleaning Up: Define Pipeline Steps and a Pipeline

The kata is to fill the classes below and to use them properly in the pipeline thereafter.

There are some missing classes as well that you should define.

from neuraxle.base import BaseStep, NonFittableMixin
from neuraxle.steps.numpy import NumpyConcatenateInnerFeatures, NumpyShapePrinter, NumpyFlattenDatum

class NumpyFFT(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Featurize time series data with FFT.

        :param data_inputs: time series data of 3D shape: [batch_size, time_steps, sensors_readings]
        :return: featurized data is of 2D shape: [batch_size, n_features]
        """
        transformed_data = np.fft.rfft(data_inputs, axis=-2)
        return transformed_data


class FFTPeakBinWithValue(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Will compute peak fft bins (int), and their magnitudes' value (float), to concatenate them.

        :param data_inputs: real magnitudes of an fft. It could be of shape [batch_size, bins, features].
        :return: Two arrays without bins concatenated on feature axis. Shape: [batch_size, 2 * features]
        """
        time_bins_axis = -2
        peak_bin = np.argmax(data_inputs, axis=time_bins_axis)
        peak_bin_val = np.max(data_inputs, axis=time_bins_axis)
        
        # Notice that here another FeatureUnion could have been used with a joiner:
        transformed = np.concatenate([peak_bin, peak_bin_val], axis=-1)
        
        return transformed


class NumpyMedian(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Will featurize data with a median.

        :param data_inputs: 3D time series of shape [batch_size, time_steps, sensors]
        :return: featurized time series of shape [batch_size, features]
        """
        return np.median(data_inputs, axis=-2)


class NumpyMean(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Will featurize data with a mean.

        :param data_inputs: 3D time series of shape [batch_size, time_steps, sensors]
        :return: featurized time series of shape [batch_size, features]
        """
        raise NotImplementedError("TODO")
        return ...

Let's now create the Pipeline with the code:

from neuraxle.base import Identity
from neuraxle.pipeline import Pipeline
from neuraxle.steps.flow import TrainOnlyWrapper
from neuraxle.union import FeatureUnion

pipeline = Pipeline([
    # ToNumpy(),  # Cast type in case it was a list.
    # For debugging, do this print at train-time only:
    TrainOnlyWrapper(NumpyShapePrinter(custom_message="Input shape before feature union")),
    # Shape: [batch_size, time_steps, sensor_features]
    FeatureUnion([
        # TODO in kata 1: Fill the classes in this FeatureUnion here and make them work.
        #      Note that you may comment out some of those feature classes
        #      temporarily and reactivate them one by one.
        Pipeline([
            NumpyFFT(),
            NumpyAbs(),  # do `np.abs` here.
            FeatureUnion([
                NumpyFlattenDatum(),  # Reshape from 3D to flat 2D: flattening data except on batch size
                FFTPeakBinWithValue()  # Extract 2D features from the 3D FFT bins
            ], joiner=NumpyConcatenateInnerFeatures())
        ]),
        NumpyMean(),
        NumpyMedian(),
        NumpyMin(),
        NumpyMax()
    ], joiner=NumpyConcatenateInnerFeatures()),  # The joiner will here join like this: np.concatenate([...], axis=-1)
    # TODO, optional: Add some feature selection right here for the motivated ones:
    #      https://scikit-learn.org/stable/modules/feature_selection.html
    TrainOnlyWrapper(NumpyShapePrinter(custom_message="Shape after feature union, before classification")),
    # Shape: [batch_size, remade_features]
    # TODO: use an `Inherently multiclass` classifier here from:
    #       https://scikit-learn.org/stable/modules/multiclass.html
    YourClassifier(),
    TrainOnlyWrapper(NumpyShapePrinter(custom_message="Shape at output after classification")),
    # Shape: [batch_size]
    Identity()
])

Test Your Code: Make the Tests Pass

The 3rd test is the real deal.

0.7 if __name__ == '__main__': tests = [_test_is_pipeline, _test_has_all_data_preprocessors, _test_pipeline_words_and_has_ok_score] for t in tests: try: t(pipeline) print("==> Test '{}(pipeline)' succeed!".format(t.__name__)) except Exception as e: print("==> Test '{}(pipeline)' failed:".format(t.__name__)) import traceback print(traceback.format_exc()) ">
def _test_is_pipeline(pipeline):
    assert isinstance(pipeline, Pipeline)


def _test_has_all_data_preprocessors(pipeline):
    assert "DecisionTreeClassifier" in pipeline
    assert "FeatureUnion" in pipeline
    assert "Pipeline" in pipeline["FeatureUnion"]
    assert "NumpyMean" in pipeline["FeatureUnion"]
    assert "NumpyMedian" in pipeline["FeatureUnion"]
    assert "NumpyMin" in pipeline["FeatureUnion"]
    assert "NumpyMax" in pipeline["FeatureUnion"]


def _test_pipeline_words_and_has_ok_score(pipeline):
    pipeline = pipeline.fit(X_train, y_train)
    
    y_pred = pipeline.predict(X_test)
    
    accuracy = accuracy_score(y_test, y_pred)
    print("Test accuracy score:", accuracy)
    assert accuracy > 0.7


if __name__ == '__main__':
    tests = [_test_is_pipeline, _test_has_all_data_preprocessors, _test_pipeline_words_and_has_ok_score]
    for t in tests:
        try:
            t(pipeline)
            print("==> Test '{}(pipeline)' succeed!".format(t.__name__))
        except Exception as e:
            print("==> Test '{}(pipeline)' failed:".format(t.__name__))
            import traceback
            print(traceback.format_exc())

Good job!

Your code should now be clean after making the tests pass.

You're ready for the Kata 2.

You should now be ready for the 2nd Clean Machine Learning Kata. Note that the solutions are available in the repository above as well. You may use the links to the Google Colab files to try to solve the Katas.


Recommended additional readings and learning resources:

Owner
Neuraxio
Neuraxio
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023