The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Overview

Quantifying Hippocampus Volume for Alzheimer's Progression

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that results in impaired neuronal (brain cell) function and eventually, cell death. AD is the most common cause of dementia. Clinically, it is characterized by memory loss, inability to learn new material, loss of language function, and other manifestations.

For patients exhibiting early symptoms, quantifying disease progression over time can help direct therapy and disease management.

A radiological study via MRI exam is currently one of the most advanced methods to quantify the disease. In particular, the measurement of hippocampal volume has proven useful to diagnose and track progression in several brain disorders, most notably in AD. Studies have shown a reduced volume of the hippocampus in patients with AD.

The hippocampus is a critical structure of the human brain (and the brain of other vertebrates) that plays important roles in the consolidation of information from short-term memory to long-term memory. In other words, the hippocampus is thought to be responsible for memory and learning (that's why we are all here, after all!)

Hippocampus
Source: Life Science Databases (LSDB). Hippocampus. Images are from Anatomography maintained by Life Science Databases (LSDB). (2010). CC-BY-SA 2.1jp. Link

Humans have two hippocampi, one in each hemisphere of the brain. They are located in the medial temporal lobe of the brain. Fun fact - the word "hippocampus" is roughly translated from Greek as "horselike" because of the similarity to a seahorse observed by one of the first anatomists to illustrate the structure, but you can also see the comparison in the following image.

Seahorse & Hippocampus
Source: Seress, Laszlo. Laszlo Seress' preparation of a human hippocampus alongside a sea horse. (1980). CC-BY-SA 1.0. Link

According to Nobis et al., 2019, the volume of hippocampus varies in a population, depending on various parameters, within certain boundaries, and it is possible to identify a "normal" range taking into account age, sex and brain hemisphere.

You can see this in the image below where the right hippocampal volume of women across ages 52 - 71 is shown.

Nomogram - Female, Right Hippocampus Volume, Corrected for Head Size
Source: Nobis, L., Manohar, S.G., Smith, S.M., Alfaro-Almagro, F., Jenkinson, M., Mackay, C.E., Husain, M. Hippocampal volume across age: Nomograms derived from over 19,700 people in UK Biobank. Neuroimage: Clinical, 23(2019), pp. 2213-1582.

There is one problem with measuring the volume of the hippocampus using MRI scans, though - namely, the process tends to be quite tedious since every slice of the 3D volume needs to be analyzed, and the shape of the structure needs to be traced. The fact that the hippocampus has a non-uniform shape only makes it more challenging. Do you think you could spot the hippocampi in this axial slice below?

Axial slice of an MRI image of the brain

As you might have guessed by now, we are going to build a piece of AI software that could help clinicians perform this task faster and more consistently.

You have seen throughout the course that a large part of AI development effort is taken up by curating the dataset and proving clinical efficacy. In this project, we will focus on the technical aspects of building a segmentation model and integrating it into the clinician's workflow, leaving the dataset curation and model validation questions largely outside the scope of this project.

What You Will Build

In this project you will build an end-to-end AI system which features a machine learning algorithm that integrates into a clinical-grade viewer and automatically measures hippocampal volumes of new patients, as their studies are committed to the clinical imaging archive.

Fortunately you won't have to deal with full heads of patients. Our (fictional) radiology department runs a HippoCrop tool which cuts out a rectangular portion of a brain scan from every image series, making your job a bit easier, and our committed radiologists have collected and annotated a dataset of relevant volumes, and even converted them to NIFTI format!

You will use the dataset that contains the segmentations of the right hippocampus and you will use the U-Net architecture to build the segmentation model.

After that, you will proceed to integrate the model into a working clinical PACS such that it runs on every incoming study and produces a report with volume measurements.

The Dataset

We are using the "Hippocampus" dataset from the Medical Decathlon competition. This dataset is stored as a collection of NIFTI files, with one file per volume, and one file per corresponding segmentation mask. The original images here are T2 MRI scans of the full brain. As noted, in this dataset we are using cropped volumes where only the region around the hippocampus has been cut out. This makes the size of our dataset quite a bit smaller, our machine learning problem a bit simpler and allows us to have reasonable training times. You should not think of it as "toy" problem, though. Algorithms that crop rectangular regions of interest are quite common in medical imaging. Segmentation is still hard.

The Programming Environment

You will have two options for the environment to use throughout this project:

Udacity Workspaces

These are setup environments that contains all you need from the Local Environment section below that you can run directly on your web browser.

Local Environment

If you would like to run the project locally, you would need a Python 3.7+ environment with the following libraries for the first two sections of the project:

In the 3rd section of the project we will be working with three software products for emulating the clinical network. You would need to install and configure:

  • Orthanc server for PACS emulation
  • OHIF zero-footprint web viewer for viewing images. Note that if you deploy OHIF from its github repository, at the moment of writing the repo includes a yarn script (orthanc:up) where it downloads and runs the Orthanc server from a Docker container. If that works for you, you won't need to install Orthanc separately.
  • If you are using Orthanc (or other DICOMWeb server), you will need to configure OHIF to read data from your server. OHIF has instructions for this: https://docs.ohif.org/configuring/data-source.html
  • In order to fully emulate the Udacity workspace, you will also need to configure Orthanc for auto-routing of studies to automatically direct them to your AI algorithm. For this you will need to take the script that you can find at section3/src/deploy_scripts/route_dicoms.lua and install it to Orthanc as explained on this page: https://book.orthanc-server.com/users/lua.html
  • DCMTK tools for testing and emulating a modality. Note that if you are running a Linux distribution, you might be able to install dcmtk directly from the package manager (e.g. apt-get install dcmtk in Ubuntu)

You can look at the rubric for this project here. Let's get started!

Owner
Omar Laham
Bioinformatician and Healthcare AI Engineer
Omar Laham
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework

OpenFed: A Comprehensive and Versatile Open-Source Federated Learning Framework Introduction OpenFed is a foundational library for federated learning

25 Dec 12, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023