Deep Compression for Dense Point Cloud Maps.

Overview

DEPOCO

This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps.

How to get started (using Docker)

Dependenices nvida-docker

Install nvida-docker and follow these instructions

Data

You can download the dataset from here and link the dataset to the docker container by configuring the Makefile

DATASETS=<path-to-your-data>

Building the docker container

For building the Docker Container simply run

make build

in the root directory.

Running the Code

The first step is to run the docker container:

make run

The following commands assume to be run inside the docker container.

Training

For training a network we first have to create the config file with all the parameters. An example of this can be found in /depoco/config/depoco.yaml. Make sure to give each config file a unique experiment_id: ... to not override previous models. To train the network simply run

python3 trainer -cfg <path-to-your-config>

Evaluation

Evaluating the network on the test set can be done by:

python3 evaluate.py -cfg <path-to-your-config>

All results will be saved in a dictonary.

Plotting the results

We can plot the quantitative results e.g. by using Jupyter-Lab. An example of this is provided in depoco/notebooks/visualize.ipynb. Jupyter-Lab can be started in the Docker container by:

jupyter-lab  --ip 0.0.0.0 --no-browser --allow-root

The 8888 port is forwarded which allows us to use it as if it would be on the host machine.

Pretrained models

The config files and the pretrained weights of our models are stored in depoco/network_files/eX/. The results can be inspected by the jupyter notebook depoco/notebooks/visualize.ipynb.

How to get started (without Docker)

Installation

A list of all dependencies and install instructions can be derived from the Dockerfile.

Running the code

After installation the training and evaluation can be run as explained before.

Qualitative Results

Plotting the point clouds using open3d can be done by

pyhon3 evaluate -cfg <path-to-your-config>

This can not be done in the docker container and thus requires the installation on the local machine.

Citation

If you use this library for any academic work, please cite the original paper.

@article{wiesmann2021ral,
author = {L. Wiesmann and A. Milioto and X. Chen and C. Stachniss and J. Behley},
title = {{Deep Compression for Dense Point Cloud Maps}},
journal = {IEEE Robotics and Automation Letters (RA-L)},
volume = 6,
issue = 2,
pages = {2060-2067},
doi = {10.1109/LRA.2021.3059633},
year = 2021
}
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022