QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Overview

Python package Python application

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The most critical ones manifest as incorrect results when evaluating queries (query bugs). Given the wide applicability of the language, query bugs may have detrimental consequences, for instance, by compromising the soundness of a program analysis that is implemented and formalized in Datalog.

QueryFuzz implements the metamorphic testing approach for Datalog engines described in:

M. N. Mansur, M. Christakis, V. Wüstholz - Metamorphic Testing of Datalog Engines -
In Proceedings of the 29th Joint European Software Engineering Conference and Symposium on 
the Foundations of Software Engineering (ESEC/FSE'21).

Installation:

Ubuntu/Debian:

Support for C++17 is required, which is supported in g++ 7/clang++ 7 on.

sudo apt-get install autoconf automake bison build-essential clang doxygen flex g++ git libffi-dev libncurses5-dev libtool libsqlite3-dev make mcpp python sqlite zlib1g-dev
git clone https://github.com/numairmansur/queryFuzz
virtualenv --python=/usr/bin/python3.7 venv
source venv/bin/activate
cd queryFuzz
python setup.py install

Usage:

Testing Soufflé:

You can immediately start testing Soufflé by just typing the following command:

queryfuzz

When you run this command for the first time, it will download and install Soufflé. We use Soufflé as our backend tool to compare and find discrepancies in the results of two Datalog programs. After successfully installing Soufflé, the above command will start the fuzzing procedure on the latest revision of Soufflé.

If you want to test a different version of Soufflé, please build and install that version and paste the path to Soufflé executable in the path_to_souffle_engine field in file /path/to/queryFuzz/params.json.

Testing µZ:

If you want to run queryFuzz on µZ, please first build and install the appropriate version of z3. Then paste the path to z3 executable in the path_to_z3_engine field in file /path/to/queryFuzz/params.json. You can then begin the fuzzing procedure by running:

queryfuzz --engine=z3

Testing DDlog:

If you want to run queryFuzz on DDlog, please first build and install the appropriate version of DDlog. Then paste the path to DDlog executable in the path_to_ddlog_engine field in file /path/to/queryFuzz/params.json. You would also have to add path to DDlog home directory in the path_to_ddlog_home_dir field in /path/to/queryFuzz/params.json. You can then begin the fuzzing procedure by running:

queryfuzz --engine=ddlog

Want to test your own Datalog engine?

If you want to use QueryFuzz to test your own Datalog engine, please get in touch at [email protected].

Running on multiple cores:

If you wish to run parallel instances of Queryfuzz on n cores, use the --cores flag. For example:

queryfuzz --cores=n

Reproducing query bugs reported in our ESEC/FSE'21 paper:

Please follow the instructions here.

You might also like...
Implements MLP-Mixer: An all-MLP Architecture for Vision.
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

 Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

FastReID is a research platform that implements state-of-the-art re-identification algorithms.
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

This implements one of result networks from Large-scale evolution of image classifiers
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

Releases(fse_repl)
Owner
Maria Christakis' research group at MPI-SWS
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023