GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

Overview

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, Weiran He

If you use this code for your research, please cite our paper:

@inproceedings{DBLP:conf/bmvc/ZhouXYFHH17,
  author    = {Shuchang Zhou and
               Taihong Xiao and
               Yi Yang and
               Dieqiao Feng and
               Qinyao He and
               Weiran He},
  title     = {GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data},
  booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
  year      = {2017},
  url       = {http://arxiv.org/abs/1705.04932},
  timestamp = {http://dblp.uni-trier.de/rec/bib/journals/corr/ZhouXYFHH17},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

We have two following papers, DNA-GAN and ELEGANT, that generalize the method into multiple attributes case. It is worth mentioning that ELEGANT can transfer multiple face attributes on high resolution images. Please pay attention to our new methods!

Introduction

This is the official source code for the paper GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data. All the experiments are initially done in our proprietary deep learning framework. For convenience, we reproduce the results using TensorFlow.

cross

GeneGAN is a deterministic conditional generative model that can learn to disentangle the object features from other factors in feature space from weak supervised 0/1 labeling of training data. It allows fine-grained control of generated images on one certain attribute in a continous way.

Requirement

  • Python 3.5
  • TensorFlow 1.0
  • Opencv 3.2

Training GeneGAN on celebA dataset

  1. Download celebA dataset and unzip it into datasets directory. There are various source providers for CelebA datasets. To ensure that the size of downloaded images is correct, please run identify datasets/celebA/data/000001.jpg. The size should be 409 x 687 if you are using the same dataset. Besides, please ensure that you have the following directory tree structure.
├── datasets
│   └── celebA
│       ├── data
│       ├── list_attr_celeba.txt
│       └── list_landmarks_celeba.txt
  1. Run python preprocess.py. It will take several miniutes to preprocess all face images. A new directory datasets/celebA/align_5p will be created.

  2. Run python train.py -a Bangs -g 0 to train GeneGAN on the attribute Bangs. You can train GeneGAN on other attributes as well. All available attribute names are listed in the list_attr_celeba.txt file.

  3. Run tensorboard --logdir='./' --port 6006 to watch your training process.

Testing

We provide three kinds of mode for test. Run python test.py -h for detailed help. The following example is running on our GeneGAN model trained on the attribute Bangs. Have fun!

1. Swapping of Attributes

You can easily add the bangs of one person to another person without bangs by running

python test.py -m swap -i datasets/celebA/align_5p/182929.jpg -t datasets/celebA/align_5p/022344.jpg
input target out1 out2
Swap Attribute

2. Linear Interpolation of Image Attributes

Besides, we can control to which extent the bangs style is added to your input image through linear interpolation of image attribute. Run the following code.

python test.py -m interpolation -i datasets/celebA/align_5p/182929.jpg -t datasets/celebA/align_5p/035460.jpg -n 5
interpolation target
Linear Interpolation

3. Matrix Interpolation in Attribute Subspace

We can do something cooler. Given four images with bangs attributes at hand, we can observe the gradual change process of our input images with a mixing of difference bangs style.

python test.py -m matrix -i datasets/celebA/align_5p/182929.jpg --targets datasets/celebA/align_5p/035460.jpg datasets/celebA/align_5p/035451.jpg datasets/celebA/align_5p/035463.jpg datasets/celebA/align_5p/035474.jpg -s 5 5
matrix
Matrix Interpolation

BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest

Hao Tang 42 Jan 15, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022