The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Overview

Openspoor

alt text

The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway. Its goal is to be publicly available and function as an open source package.

Currently the openspoor package allows the following transformations:

Type of input:

  • Point data

These transformations can be performed between the following systems:

Geographical systems:

  • WGS84 coordinate system (commonly known as GPS coordinates)
  • EPSG:28992 coordinate system (commonly known in the Netherlands as Rijksdriehoek)

Topological systems:

  • Geocode and geocode kilometrering
  • Spoortak and spoortak kilometrering (unavailable on switches)

Getting Started

Installation

Installation using anaconda

  • Clone the "openspoor" repository
    • pip install openspoor
  • create an environment:
    • conda create -n openspoorenv python==3.6.12
  • activate the environment:
    • conda activate openspoorenv
  • If you are installing on Windows OS with Anaconda, first install rtree and geopandas through anaconda with the commands:
    • conda install rtree==0.8.3 -y
    • conda install geopandas==0.6.1 -y
  • In the root directory of the repository, execute the command:
    • pip install -r requirements.txt
  • In the root directory of the repository, execute the command:
    • pip install .
  • In the root directory of the repository, execute the command:
    • python -m pytest
  • If all the test succeed, the openspoor package is ready to use and you are on the right "track"!

Demonstration notebook

In the future a notebook will be added that demonstrates the use of the openspoor package. For now one can take the code in the acceptance tests as example of how to use the package.

Dependencies

The transformations available in the openspoor package rely completely on data and API's made available at https://mapservices.prorail.nl/. Be aware of this dependency and specifically of the following possible issues:

  • The use of API's on mapservices.prorail.nl is changed
  • The output data of the mapservices API's is changed (with added, removed or missing columns for instance)

Furthermore mapservices.prorail.nl only provides current information about the topological systems used in Dutch Railways. As the topological systems tend to change with time, due to changing infrastructure and naming conventions, the current topological system is not necessarily sufficient to provide transformations on historical data. In the future we hope to add historical topological systems as part of the functionality of this package in such a way that it is available publicly.

Structure

The structure of the openspoor package is largely split in two categories.

MapservicesData

The MapservicesData classes use mapservices.prorail.nl API's to retrieve the necessary data to perform transformations. The essentially function as an interface with the topological systems used by ProRail.

  • PUICMapservices provides general data about railway tracks (spoor) and switches (wissel and kruisingbenen). This contains information regarding Geocode, geocodekilometrering, but also Spoortak identificatie.
  • SpoortakMapservices provides information about railway tracks concerning Spoortak identificatie and lokale kilometrering.

Transformers

The various transformers use the geopandas dataframes obtained by MapservicesData objects to add additional geographical or topological systems to a given geopandas input dataframe. The current transformers only function for geopandas dataframes containing Point data. The available transformers are:

  • TransformerCoordinatesToSpoor: transforms WGS84 or EPSG:28992 coordinates to spoortak and lokale kilomtrering as well as geocode and geocode kilometrering.
  • TransformerGeocodeToCoordinates: transforms geocode and geocode kilometrering to WGS84 or EPSG:28992 coordinates.
  • TransformerSpoorToCoordinates: transforms spoortak and lokale kilometrering to WGS84 or EPSG:28992 coordinates.

Release History

  • 0.1.0
    • The first proper release
    • ADD: transform point data between geographical systems.
  • 0.0.1
    • Work in progress

Contributing

The openspoor package stimulates every other person the contribute to the package. To do so:

  • Fork it
  • Create your feature branch (git checkout -b feature/fooBar)
  • Commit your changes (git commit -am 'Add some fooBar')
  • Push to the branch (git push origin feature/fooBar)
  • Create a new Pull Request with 3 obligated reviewers from the developement team.

You could also contribute by thinking of possible new features. The current backlog is:

  • Make the package available for the "spoor" industry.
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022