Automated Hyperparameter Optimization Competition

Overview

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛

ACM CIKM 2021 AnalyticCup

在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真实业务场景问题出发,并基于脱敏后的数据集来评测各个参赛队伍的超参数优化算法。本赛题为超参数优化问题或黑盒优化问题:给定超参数的取值空间,每一轮可以获取一组超参数对应的Reward,要求超参数优化算法在限定的迭代轮次内找到Reward尽可能大的一组超参数,最终按照找到的最大Reward来计算排名。

1. 重要资源

2.代码结构

|--example_random_searcher  随机算法代码提交示例
|  `--searcher.py
|
|--example_bayesian_optimization 贝叶斯优化算法提交示例
|  |--requirements.txt     提交附加程序包示例
|  `--searcher.py
|
|--input                   测试评估函数数据
|  |--data-2
|  `--data-30
|
|--thpo                    thpo比赛工具包
|  |--__init__.py
|  |--abstract_searcher.py
|  |--common.py
|  |--evaluate_function.py
|  |--reward_calculation.py
|  |--run_search_one_time.py
|  `--run_search.py
|
|--main.py                 测试主程序文件
|--local_test.sh           本地测试脚本
|--prepare_submission.sh   提交代码前打包脚本
|--environments.txt        评测环境已经安装的包
`--requirements.txt        demo程序依赖的包环境

3. 快速入门

3.1 环境搭建

THPO-Kit程序工具包使用python3编写,程序依赖包在requirements.txt中,需要安装依赖包才能执行,使用pip3安装依赖包:

pip3 install -r requirements.txt

3.2 算法创建

  1. 参照 example_randon_searcher,新建一个自己算法的目录my_algo
  2. my_algo目录下新建searcher.py文件
  3. searcher.py文件里实现自己的Searcher类(文件名和类名不允许自定义)
  4. 实现 __init__suggest 函数
  5. 修改 local_test.sh,将SEARCHER修改为my_algo
  6. 执行 local_test.sh 脚本,将得到算法的执行结果

Step 1 - Step 2:[root folder]

|--my_algo
|  |--requirements.txt
|  `--searcher.py 
|--local_test.sh

Step 3 - Step 4:[searcher.py]

# 必须引入searcher抽象类,必不可少
from thpo.abstract_searcher import AbstractSearcher
from random import randint

class Searcher(AbstractSearcher):
    searcher_name = "RandomSearcher"

    def __init__(self, parameters_config, n_iter, n_suggestion):
        AbstractSearcher.__init__(self, 
                                  parameters_config, 
                                  n_iter,
                                  n_suggestion)

    def suggest(self, suggestion_history, n_suggestions=1):
        next_suggestions = []
        for i in range(n_suggestions):
            next_suggest = {
                name: 
                conf["coords"][randint(0,len(conf["coords"])-1)]
                for name, conf in self.parameters_config.items()
            }
            next_suggestions.append(next_suggest)
        return next_suggestions

Step 5:[local_test.sh]

SEARCHER="my_algo"

3.3 本地运行

执行脚本local_test.sh进行本地评测

./local_test.sh

执行结果:

====================== run search result ========================
 err_code:  0  err_msg:  
========================= iters means ===========================
func: data-2 iteration best: [25.24271821 26.36435157 12.77928619 10.19180929 11.3147711  10.17430656
 12.77928619 27.79752169 26.36793589 11.12007615]
func: data-30 iteration best: [-0.95264345 -0.27725879 -0.36873091 -0.68088963 -0.28840479 -0.50006427
 -0.32088949 -0.78627201 -0.53204227 -0.98427191]
========================= fianl score ============================
example_bayesian_optimization final score:  0.47173337831255463
==================================================================

3.4 提交比赛代码

使用prepare_submission.sh 脚本打包,提交打包后的searcher程序包到比赛代码提交入口

./prepare_submission.sh example_random_searcher

执行结果:

upload_example_random_searcher_08131917
  adding: requirements.txt (stored 0%)
  adding: searcher.py (deflated 66%)
----------------------------------------------------------------
Built achive for upload
Archive:  ./upload_example_random_searcher_08131917.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
        0  08-13-2021 19:17   requirements.txt
     3767  08-13-2021 19:17   searcher.py
---------                     -------
     3767                     2 files
For scoring, upload upload_example_random_searcher_08131917.zip at address:
https://algo.browser.qq.com/


QQ Browser 2021 AI Algorithm Competiton - Automated Hyperparameter Optimization Contest

ACM CIKM 2021 AnalyticCup

The choices of hyperparameters have critical effects on models or strategies in recommendation systems. But the hyperparameters are mostly chosen based on experience, which brings high maintenance costs and sub-optimal results. Thus, this track aims at automated hyperparameters optimization based on anonymized realistic industrial tasks and datasets. Given the space of all possible hyperparameters' values, a reward could be achieved with a set of hyperparameters in each iteration. The participants are asked to maximize the reward within a given limit of iterations with a hyperparameters optimization algorithm. The final rank of the participants will be the rank of their maximum reward.

1.Resource

2.Repo structure

|--example_random_searcher   	    # example of random search
|  `--searcher.py
|
|--example_bayesian_optimization    # example of bayesian optimization
|  |--requirements.txt              # extra paackge requirement
|  `--searcher.py
|
|--input                            # testcases
|  |--data-2
|  `--data-30
|
|--thpo                             # thpo-kit
|  |--__init__.py
|  |--abstract_searcher.py
|  |--common.py
|  |--evaluate_function.py
|  |--reward_calculation.py
|  |--run_search_one_time.py
|  `--run_search.py
|
|--main.py                          # main
|--local_test.sh                    # script for local test
|--prepare_submission.sh            # script for submission
|--environments.txt                 # packages installed in remote envrionment
`--requirements.txt                 # demo requirements

3. Quick start

3.1 Environment setup

The THPO-Kit program toolkit is written in python3. The program dependency packages are in requirements.txt, and the dependency packages needs to be installed to execute scripts. Use pip3 to install the dependency package:

pip3 install -r requirements.txt

3.2 Create a searcher

  1. Refer to example_randon_searcher, create a new directory my_algo for your algorithm
  2. Create a new searcher.py file in the my_algo directory
  3. Implement your own Searcher class in the searcher.py file (the file name and class name are not allowed to be customized)
  4. Implement __init__ and suggest functions
  5. Modify local_test.sh and change SEARCHER to my_algo
  6. Execute the local_test.sh script to get the results of the algorithm

Step 1 - Step 2:[root folder]

|--my_algo
|  |--requirements.txt
|  `--searcher.py 
|--local_test.sh

Step 3 - Step 4:[searcher.py]

# MUST import AbstractSearcher from thpo.abstract_searcher
from thpo.abstract_searcher import AbstractSearcher
from random import randint

class Searcher(AbstractSearcher):
    searcher_name = "RandomSearcher"

    def __init__(self, parameters_config, n_iter, n_suggestion):
        AbstractSearcher.__init__(self, 
                                  parameters_config, 
                                  n_iter,
                                  n_suggestion)

    def suggest(self, suggestion_history, n_suggestions=1):
        next_suggestions = []
        for i in range(n_suggestions):
            next_suggest = {
                name: 
                conf["coords"][randint(0,len(conf["coords"])-1)]
                for name, conf in self.parameters_config.items()
            }
            next_suggestions.append(next_suggest)
        return next_suggestions

Step 5:[local_test.sh]

SEARCHER="my_algo"

3.3 Local test

Execute the script local_test.sh for local evaluation

./local_test.sh

Execution output:

====================== run search result ========================
 err_code:  0  err_msg:  
========================= iters means ===========================
func: data-2 iteration best: [25.24271821 26.36435157 12.77928619 10.19180929 11.3147711  10.17430656
 12.77928619 27.79752169 26.36793589 11.12007615]
func: data-30 iteration best: [-0.95264345 -0.27725879 -0.36873091 -0.68088963 -0.28840479 -0.50006427
 -0.32088949 -0.78627201 -0.53204227 -0.98427191]
========================= fianl score ============================
example_bayesian_optimization final score:  0.47173337831255463
==================================================================

3.4 Submission

Use prepare_submission.sh script to create a zip file, and submit the zip file to competition website Code submission entry.

./prepare_submission.sh example_random_searcher

Execution output:

upload_example_random_searcher_08131917
  adding: requirements.txt (stored 0%)
  adding: searcher.py (deflated 66%)
----------------------------------------------------------------
Built achive for upload
Archive:  ./upload_example_random_searcher_08131917.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
        0  08-13-2021 19:17   requirements.txt
     3767  08-13-2021 19:17   searcher.py
---------                     -------
     3767                     2 files
For scoring, upload upload_example_random_searcher_08131917.zip at address:
https://algo.browser.qq.com/
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
190 Jan 03, 2023
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023