Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Overview

Model converter

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

You can use this project to:

  1. Pytorch -> onnx (float32)
  2. Pytorch -> onnx -> tflite (float32)
  3. Pytorch -> onnx -> tflite (int8)

Requirements

torch2onnx

pytorch
onnx
opencv-python

torch2tflite

tensorflow ~= 2.5
torch == 1.8.1
tensorflow-addons ~= 0.15
opencv-python ~= 4.5.4
onnx ~= 1.10
onnx-tf ~= 1.9
numpy >= 1.19

(opencv-python is optional)

Usage

torch2onnx (float32)

from converter import Torch2onnxConverter

converter = Torch2onnxConverter(model_path, target_shape=(3,224,224))
converter.convert()

torch2tflite (float32)

from converter import Torch2TFLiteConverter

converter = Torch2TFLiteConverter(tmp_path, tflite_model_save_path='model_float32.lite', target_shape=(224,224,3))
converter.convert()

torch2tflite (int8)

from converter import Torch2TFLiteConverter

converter = Torch2TFLiteConverter(tmp_path, tflite_model_save_path='model_int8.lite', target_shape=(224,224,3),
                                    representative_dataset=representative_dataset)
converter.convert()

More details can be found in Torch2onnxConverter and Torch2TfliteConverter __init__ method.

Note that target_shape is different for Pytorch and Tensorflow.

Example

  1. torch2onnx example

  2. torch2tflite example

Owner
Roxbili
Roxbili
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Deep Learning โค๏ธ OneFlow

Deep Learning with OneFlow made easy ๐Ÿš€ ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iรฑigo Alonso Ruiz 25 Sep 29, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website โ€ข Docs โ€ข Twitter โ€ข Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Hรฉber Jรบlio 77 Oct 02, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch ์•ˆ๋…•ํ•˜์„ธ์š”. ์ €๋Š” TUNiB์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด๋กœ ๊ทผ๋ฌด ์ค‘์ธ ๊ณ ํ˜„์›…์ž…๋‹ˆ๋‹ค. ์ด ์ž๋ฃŒ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด๋ชจ๋ธ ๊ฐœ๋ฐœ์— ํ•„์š”ํ•œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ์ˆ ๋“ค์„ ์†Œ๊ฐœ๋“œ๋ฆฌ๊ธฐ ์œ„ํ•ด ๋งˆ๋ จํ•˜์˜€์œผ๋ฉฐ ๊ธฐ๋ณธ์ ์œผ๋กœ

TUNiB 172 Dec 29, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
Hyperbolic Hierarchical Clustering.

Hyperbolic Hierarchical Clustering (HypHC) This code is the official PyTorch implementation of the NeurIPS 2020 paper: From Trees to Continuous Embedd

HazyResearch 154 Dec 15, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022