Predicting India’s COVID-19 Third Wave with LSTM

Overview

Predicting India’s COVID-19 Third Wave with LSTM

Complete project of predicting new COVID-19 cases in the next 90 days with LSTM

India is seeing a steep rise in COVID-19 cases again! So, I thought about using the artificial recurrent neural network (RNN) architecture Long Short-Term Memory (LSTM) to predict how the COVID-19 graph will look in next 90 days (starting from 11 January 2022).

Dataset

The dataset is downloaded from ‘COVID-19 India Datasets by DataMeet’. The data is community collected, cleaned and organized from different government websites which are freely available to all the Indians.

Github Repository: https://github.com/datameet/covid19

The dataset has a Creative Commons Attribution 4.0 International Public License. The dataset is downloaded on 10 January 2022 and contains data up to the same date.

We are using the file all_totals.JSON in the data directory.

Technology

We have used the artificial recurrent neural network (RNN) architecture Long Short-Term Memory (LSTM) for this project. The CovidPredictionLSTM.ipynb file is the Jupyter Notebook file containing all of the work.

This study/project just showcases the usage of the LSTM architecture in predicting time-series data. In this case, we used the COVID-19 data from India for our study. This model does not consider transmissibility and other factors while making the predictions.

Author Info

Samrat Dutta

Github: https://github.com/SamratDuttaOfficial

Linkedin: https://www.linkedin.com/in/SamratDuttaOfficial [Hire Me]

Wisest Friends (Machine Learning) Discord: https://discord.gg/7Bx6PGVy

Buy me a coffee: https://www.buymeacoffee.com/SamratDutta

Owner
Samrat Dutta
Developer, designer, writer. Developer of CoWiseCare.
Samrat Dutta
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021