A whale detector design for the Kaggle whale-detector challenge!

Overview

CNN (InceptionV1) + STFT based Whale Detection Algorithm

So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The objective of this challenge was to basically do a binary classification, (hence really a detection), on the existance of whale signals in the water.

It's a pretty cool problem that resonates with prior work I have done in underwater perception algorithm design - a freakishly hard problem I may add. (The speed of sound changes on you, multiple reflections from the environment, but probably the hardest of all being that it's hard to gather ground-truth). (<--- startup idea? 💥 )

Anyway! My approach is to first transform the 1D acoustic time-domain signal into a 2D time-frequency representation via the Short-Time-Fourier-Transform (STFT). We do this in the following way:

(Where K_F is the raw number of STFT frequency bands, n is the discrete time index, m is the temporal index of each STFT pixel, x[n] the raw audio signal being transformed, and k representing the index of each STFT pixel's frequency). In this way, we break the signal down into it's constituent time-frequency energy cells, (which are now pixels), but more crucially, we get a representation that has distinct features across time and frequency that will be correlated with each other. This then makes it ripe for a Convolutional Neural Network (CNN) to chew into.

Here is what a whale-signal's STFT looks like:

Pos whale spectrogram

Similarly, here's what a signal's STFT looks like without any whale signal. (Instead, there seems to be some short-time but uber wide band interference at some point in time).

Neg whale spectrogram

It's actually interesting, because there are basically so many more ways in which a signal can manifest itself as not a whale signal, VS as actually being a whale signal. Does that mean we can also frame the problem as learning the manifold of whale-signals and simply do outlier analysis on that? Something to think about. :)

Code Usage:

Ok - let us now talk about how to use the code:

The first thing you need to do is install PyTorch of course. Do this from here. I use a conda environment as they recommend, and I recommend you do the same.

Once this is done, activate your PyTorch environment.

Now we need to download the raw data. You can get that from Kaggle's site here. Unzip this data at a directory of your choosing. For the purpose of this tutorial, I am going to assume that you placed and unzipped the data as such: /Users/you/data/whaleData/. (We will only be using the training data so that we can split it into train/val/test. The reason is that we do not have access to Kaggle's test labels).

We are now going to do the following steps:

  • Convert the audio files into numpy STFT tensors:
    • python whaleDataCreatorToNumpy.py -s 1 -dataDir /Users/you/data/whaleData/train/ -labelcsv /Users/you/data/whaleData/train.csv -dataDirProcessed /Users/you/data/whaleData/processedData/ -ds 0.42 -rk 20 200
    • The -s 1 flag says we want to save the results, the -ds 0.42 says we want to downsample the STFT image by this amount, (to help with computation time), and the -rk 20 200 says that we want the "rows kept" to be indexed from 20 to 200. This is because the STFT is conjugate symmetric, but also because we make a determination by first swimming in the data, (I swear this pun is not intentional), that most of the informational content lies between those bands. (Again, the motivation is computational here as well).
  • Convert and split the STFT tensors into PyTorch training/val/test Torch tensors:
    • python whaleDataCreatorNumpyToTorchTensors.py -numpyDataDir /Users/you/data/whaleData/processedData/
    • Here, the original numpy tensors are first split and normalized, and then saved off into PyTorch tensors. (The split percentages are able to be user defined, I set the defaults set 20% for validation and 10% test). The PyTorch tensors are saved in the same directory as above.
  • Run the CNN classifier!
    • We are now ready to train the classifier! I have already designed an Inception-V1 CNN architecture, that can be loaded up automatically, and we can use this as so. The input dimensions are also guaranteed to be equal to the STFT image sizes here. At any rate, we do this like so:
    • python whaleClassifier.py -dataDirProcessed /Users/you/data/whaleData/processedData/ -g 0 -e 1 -lr 0.0002 -L2 0.01 -mb 4 -dp 0 -s 3 -dnn 'inceptionModuleV1_75x45'
    • The g term controls whether or not we want to use a GPU to trian, e controls the number of epochs we want to train over, lr is the learning rate, L2 is the L2 penalization amount for regularization, mb is the minibatch size, (which will be double this as the training composes a mini-batch to have an equal number of positive and negative samples), dp controls data parallelism (moot without multiple GPUs, and is really just a flag on whether or not to use multiple GPUs), s controls when and how often we save the net weights and validation losses, (option 3 saves the best performing model), and finally, -dnn is a flag that controls which DNN architecture we want to use. In this way, you can write your own DNN arch, and then simply call it by whatever name you give it for actual use. (I did this after I got tired of hard-coding every single DNN I designed).
    • If everything is running smoothly, you should see something like this as training progresses:
    • The "time" here just shows how long it takes between the reporting of each validation score. (Since I ran this on my CPU, it's 30 seconds / report, but expect this to be at least an order of magnitude faster on a respectable GPU).
  • Evauluate the results!
    • When your training is complete, you can then then run this script to give you automatically generated ROC and PR curves for your network's performance:
    • python resultsVisualization.py -dataDirProcessed /Users/you/data/whaleData/processedData/ -netDir .
    • After a good training session, you should get results that look like so:
    • I also show the normalized training / validation likelihoods and accuracies for the duration of the session:

So wow! An AUC of 0.9669! Not too shabby! Can still be improved, but considering the data looks like this below, our InceptionV1-CNN isn't doing too bad either. 💥

Owner
Tarin Ziyaee
Eng Manager @Facebook FRL neural interfaces | Director R&D @CTRL-labs neural inferfaces. | CTO @Voyage, autonomous vehicles | Perception @Apple Autonomous
Tarin Ziyaee
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022