Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

Overview

LQVAE-separation

Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

Paper

Samples

GT Compressed Separated
Drums GT Compressed Drums Separated Drums
Bass GT Compressed Bass Separated Bass
Mix GT Compressed Mix Separated Mix

The separation is performed on a x64 compressed latent domain. The results can be upsampled via Jukebox upsamplers in order to increment perceptive quality (WIP).

Install

Install the conda package manager from https://docs.conda.io/en/latest/miniconda.html

conda create --name lqvae-separation python=3.7.5
conda activate lqvae-separation
pip install mpi4py==3.0.3
pip install ffmpeg-python==0.2.0
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2
pip install -r requirements.txt
pip install -e .

Checkpoints

  • Enter inside script/ folder and create the folder checkpoints/ and the folder results/.
  • Download the checkpoints contained in this Google Drive folder and put them inside checkpoints/

Separation with checkpoints

  • Call the following in order to perform bs separations of 3 seconds starting from second shift of the mixture created with the sources in path_1 and path_2. The sources must be WAV files sampled at 22kHz.
    PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs
    
  • The default value for bs is 64, and can be handled by an RTX3080 with 16 GB of VRAM. Lower the value if you get CUDA: out of memory.

Training

LQ-VAE

  • The vqvae/vqvae.pyfile of Jukebox has been modified in order to include the linearization loss of the LQ-VAE (it is computed at all levels of the hierarchical VQ-VAE but we only care of the topmost level given that we perform separation there). One can train a new LQ-VAE on custom data (here data/train for train and data/test for test) by running the following from the root of the project
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae --sample_length=131072 --bs=8 
--audio_files_dir=data/train/ --labels=False --train --test --aug_shift --aug_blend --name=lq_vae --test_audio_files_dir=data/test
  • The trained model uses the vqvae hyperparameters in hparams.py so if you want to change the levels / downsampling factors you have to modify them there.
  • The only constraint for training the LQ-VAE is to use an even number for the batch size, given its use of pairs in the loss.
  • Given that L_lin enforces the sum operation on the latent domain, you can use the data of both sources together (or any other audio data).
  • Checkpoints are save in logs/lq_vae (lq_vae is the name parameter).

Priors

  • After training the LQ-VAE, train two priors on two different classes by calling
PYTHONPATH=. mpiexec -n 1 python jukebox/train.py --hps=vqvae,small_prior,all_fp16,cpu_ema --name=pior_source
 --audio_files_dir=data/source/train --test_audio_files_dir=data/source/test --labels=False --train --test --aug_shift
  --aug_blend --prior --levels=3 --level=2 --weight_decay=0.01 --save_iters=1000 --min_duration=24 --sample_length=1048576 
  --bs=16 --n_ctx=8192 --sample=True --sample_iters=1000 --restore_vqvae=logs/lq_vae/checkpoint_lq_vae.pth.tar
  • Here the data of the source is located in data/source/train and data/source/test and we assume the LQ-VAE has 3 levels (topmost level = 2).
  • The Transformer model is defined by the parameters of small_prior in hparams.py and uses a context of n_ctx=8192 codes.
  • The checkpoint path of the LQ-VAE trained in the previous step must be passed to --restore_vqvae
  • Checkpoints are save in logs/pior_source (pior_source is the name parameter).

Codebook sums

  • Before separation, the sums between all codes must be computed using the LQ-VAE. This can be done using the codebook_precalc.py in the script folder:
PYTHONPATH=.. python codebook_precalc.py --save_path=checkpoints/codebook_sum_precalc.pt 
--restore_vqvae=../logs/lq_vae/checkpoint_lq_vae.pth.tar` --raw_to_tokens=64 --l_bins=2048
--sample_rate=22050 --alpha=[0.5, 0.5] --downs_t=(2, 2, 2) --commit=1.0 --emb_width=64

Separation with trained checkpoints

  • Trained checkpoints can be given to bayesian_inference.py as following:
    PYTHONPATH=.. python bayesian_inference.py --shift=shift --path_1=path_1 --path_2=path_2 --bs=bs --restore_vqvae=checkpoints/checkpoint_step_60001_latent.pth.tar
    --restore_priors 'checkpoints/checkpoint_drums_22050_latent_78_19k.pth.tar' checkpoints/checkpoint_latest.pth.tar' --sum_codebook=checkpoints/codebook_precalc_22050_latent.pt
    
  • restore_priors accepts two paths to the first and second prior checkpoints.

Evaluation

  • In order to evaluate the pre-trained checkpoints, run bayesian_test.py after you have put the full Slakh drums and bass validation split inside data/bass/validation and data/drums/validation.

Future work

  • training of upsamplers for increasing the quality of the separations
  • better rejection sampling method (maybe use verifiers as in https://arxiv.org/abs/2110.14168)

Citations

If you find the code useful for your research, please consider citing

@article{mancusi2021unsupervised,
  title={Unsupervised Source Separation via Bayesian Inference in the Latent Domain},
  author={Mancusi, Michele and Postolache, Emilian and Fumero, Marco and Santilli, Andrea and Cosmo, Luca and Rodol{\`a}, Emanuele},
  journal={arXiv preprint arXiv:2110.05313},
  year={2021}
}

as well as the Jukebox baseline:

  • Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341.
Owner
Michele Mancusi
PhD student in Computer Science @ La Sapienza University of Rome, MSc in Quantum Information @ La Sapienza University of Rome
Michele Mancusi
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022