A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

Overview

AutoTrader Logo

AutoTrader

Latest version Total downloads Monthly downloads Build Status Documentation Status

AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From simple indicator-based strategies, to complex non-directional hedging strategies, AutoTrader can do it all. If you prefer a more hands-on approach to trading, AutoTrader can also assist you by notifying you of price behaviour, ensuring you never miss a signal again. A basic level of experience with Python is recommended for using AutoTrader, but the docs aim to make using it as easy as possible with detailed tutorials and documentation.

Features

Installation

AutoTrader can be installed using pip:

pip install autotrader

Updating

AutoTrader can be updated by appending the --upgrade flag to the install command:

pip install autotrader --upgrade

Documentation

AutoTrader is very well documented in-code and on Read the Docs. There is also a detailed walthrough, covering everything from strategy concept to livetrading.

Example Strategies

Example strategies can be found in the demo repository. You can also request your own strategy to be built here.

Backtest Demo

The chart below is produced by a backtest of the MACD trend strategy documented in the tutorials (and available in the demo repository). Entry signals are defined by MACD crossovers, with exit targets defined by a 1.5 risk-to-reward ratio. Stop-losses are automatically placed using the custom swing detection indicator, and position sizes are dynamically calculated based on risk percentages defined in the strategy configuration.

Running this strategy with AutoTrader in backtest mode will produce the following interactive chart.

MACD-backtest-demo

Note that stop loss and take profit levels are shown for each trade taken. This allows you to see how effective your exit strategy is - are you being stopped out too early by placing your stop losses too tight? Are you missing out on otherwise profitable trades becuase your take profits are too far away? AutoTrader helps you visualise your strategy and answer these questions.

Legal

License

AutoTrader is licensed under the GNU General Public License v3.0.

Disclaimer

This platform is currently under heavy development and should not be considered stable for livetrading until version 1.0.0 is released.

Never risk money you cannot afford to lose. Always test your strategies on a paper trading account before taking it live.

code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
This is the official pytorch implementation of Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation(TESKD)

Student Helping Teacher: Teacher Evolution via Self-Knowledge Distillation (TESKD) By Zheng Li[1,4], Xiang Li[2], Lingfeng Yang[2,4], Jian Yang[2], Zh

Zheng Li 9 Sep 26, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022