A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

Related tags

Deep Learningjie
Overview

jie

jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model.

The codename is a tribute to the Chinese homophones:

  • 结 (jié) : a knot, a nod to the mysterious and often entangled structures of DNA
  • 解 (jiĕ) : to solve, to untie, our bid to uncover these structures amid noise and uncertainty
  • 姐 (jiĕ) : sister, our ability to resolve tightly paired replicated chromatids

Installation

Step 1 - Clone this repository:

git clone https://github.com/b2jia/jie.git
cd jie

Step 2 - Create a new conda environment and install dependencies:

conda create --name jie -f environment.yml
conda activate jie

Step 3 - Install jie:

pip install -e .

To test, run:

python -W ignore test/test_jie.py

Usage

jie is an exposition of chromatin tracing using polymer physics. The main function of this package is to illustrate the utility and power of spatial genome alignment.

jie is NOT an all-purpose spatial genome aligner. Chromatin imaging is a nascent field and data collection is still being standardized. This aligner may not be compatible with different imaging protocols and data formats, among other variables.

We provide a vignette under jie/jupyter/, with emphasis on inspectability. This walks through the intuition of our spatial genome alignment and polymer fiber karyotyping routines:

00-spatial-genome-alignment-walk-thru.ipynb

We also provide a series of Jupyter notebooks (jie/jupyter/), with emphasis on reproducibility. This reproduces figures from our accompanying manuscript:

01-seqFISH-plus-mouse-ESC-spatial-genome-alignment.ipynb
02-seqFISH-plus-mouse-ESC-polymer-fiber-karyotyping.ipynb
03-seqFISH-plus-mouse-brain-spatial-genome-alignment.ipynb
04-seqFISH-plus-mouse-brain-polymer-fiber-karyotyping.ipynb
05-bench-mark-spatial-genome-agignment-against-chromatin-tracing-algorithm.ipynb

A command-line tool forthcoming.

Motivation

Multiplexed DNA-FISH is a powerful imaging technology that enables us to peer directly at the spatial location of genes inside the nucleus. Each gene appears as tiny dot under imaging.

Pivotally, figuring out which dots are physically linked would trace out the structure of chromosomes. Unfortunately, imaging is noisy, and single-cell biology is extremely variable. The two confound each other, making chromatin tracing prohibitively difficult!

For instance, in a diploid cell line with two copies of a gene we expect to see two spots. But what happens when we see:

  • Extra signals:
    • Is it noise?
      • Off-target labeling: The FISH probes might inadvertently label an off-target gene
    • Or is it biological variation?
      • Aneuploidy: A cell (ie. cancerous cell) may have more than one copy of a gene
      • Cell cycle: When a cell gets ready to divide, it duplicates its genes
  • Missing signals:
    • Is it noise?
      • Poor probe labeling: The FISH probes never labeled the intended target gene
    • Or is it biological variation?
      • Copy Number Variation: A cell may have a gene deletion

If true signal and noise are indistinguishable, how do we know we are selecting true signals during chromatin tracing? It is not obvious which spots should be connected as part of a chromatin fiber. This dilemma was first aptly characterized by Ross et al. (https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.011918), which is nothing short of prescient...!

jie is, conceptually, a spatial genome aligner that disambiguates spot selection by checking each imaged signal against a reference polymer physics model of chromatin. It relies on the key insight that the spatial separation between two genes should be congruent with its genomic separation.

It makes no assumptions about the expected copy number of a gene, and when it traces chromatin it does so instead by evaluating the physical likelihood of the chromatin fiber. In doing so, we can uncover copy number variations and even sister chromatids from multiplexed DNA-FISH imaging data.

Citation

Contact

Author: Bojing (Blair) Jia
Email: b2jia at eng dot ucsd dot edu
Position: MD-PhD Student, Ren Lab

For other work related to single-cell biology, 3D genome, and chromatin imaging, please visit Prof. Bing Ren's website: http://renlab.sdsc.edu/

Owner
Bojing Jia
How do we better describe the world around us?
Bojing Jia
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022