PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

Overview

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE is a new algorithm for ranking neurons in a CNN architecture in order of importance towards the final classification. PCACE is a statistical method combining Alternating Condition Expectation with Principal Component Analysis to find the maximal correlation coefficient between a hidden neuron and the final class score. This yields a rigorous and standardized method for quantifying the relevance of each neuron towards the final model classification.

Summary of Usage

  1. pcace_resnet_18.py: code for the PCACE algorithm in the ResNet-18 architecture. Uses PyTorch to load the model and requires the ACE package. Caps indicate variables changeable by the user: NUM_IMAGES: the number of input images for PCACE. CLASS: the class to which the input images belong to. LAYER_NAME: name of the convolutional layer to which we apply PCACE. Follows the structure layerx[y].convz. NUM_CHANNELS: number of channels in LAYER_NAME. SIZE: number of pixels in the activation maps of LAYER_NAME. SIZE_X, SIZE_Y: height and width of the activation maps. Must have SIZE = SIZE_X*SIZE_Y. CLASS_IDX: before the softmax, which index corresponds to the class score (class of the set of input images). PCA_COMP: number of components to which PCA wishes to be reduced to. After the algorithm runs, it provides an array results with the PCACE values of all channels, which can then be sorted.

  2. pcace_vgg_16.py: same code an functionality as pcace_resnet_18.py but in the VGG-16 architecture instead of ResNet-18. Computes the PCACE values for any layer in the VGG-16 architecture.

  3. activation_maximization.py: code to visualize the filter activation maximization images with VGG-16 following the code from https://github.com/keisen/tf-keras-vis. Uses Keras to load the model and requires teh tf-keras-vis package. Caps indicate variables changeable by the user: LAYER_NAME: where is the channel whose feature visualization we are trying to see. FILTER_NUMBER: which channel within that layer.

  4. visualize_act_maps_resnet_18.py: code to visualize the activation maps of the top PCACE channels with ResNet-18. As in pcace_resnet_18.py, it uses PyTorch to load the model. Caps indicate variables changeable by the user: LAYER_NAME: name of the convolutional layer to which we apply PCACE. Follows the structure layerx[y].convz. ORDER: an array containing the PCACE channels sorted from lowest to highest value. The good_urls refer to a list containing the URLs of the images that one wishes to visualize.

  5. visualize_act_maps_vgg_16.py: same functionality as in the visualize_act_maps_resnet_18.py code (i.e., visualize the activation maps of the top PCACE channels), but in the VGG-16 architecture instead of ResNet-18.

  6. visualizing_cam.py: producing CAM visualizations with ResNet-18 following the code from https://github.com/zhoubolei/CAM. Uses PyTorch to load the model. Returns the CAM visualization of the input image (in this case, given with a URL).

  7. london_kdd_examples_slevel.csv: The .csv file contains metadata for the 300 street level images we used in our experiments. In our experiments we used images from Google Street View. More information on these images and how to use them are available from here: https://developers.google.com/maps/documentation/streetview/overview. gsv_panoid: correspods to the 'pano' parameter, which is a specific panorama ID for the image. gsv_lat, gsv_lng: corresponds the the location coordinates for the image. Both gsv_panoid and gsv_lat, gsv_lng parameters can be used to access the images used in our experiments.

Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
The source code of CVPR17 'Generative Face Completion'.

GenerativeFaceCompletion Matcaffe implementation of our CVPR17 paper on face completion. In each panel from left to right: original face, masked input

Yijun Li 313 Oct 18, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023