The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

Overview

Intermdiate layer matters - SSL

The official repository for "Intermediate Layers Matter in Momentum Contrastive Self Supervised Learning" paper.

  1. Download the data for the experiments:

The data can be downloaded from kaggle.com. NIH chest-xray dataset: https://www.kaggle.com/nih-chest-xrays/data Breast cancer histopathology dataset: https://www.kaggle.com/paultimothymooney/breast-histopathology-images Diabetic Retinopathy dataset: https://www.kaggle.com/c/diabetic-retinopathy-detection/data

  1. Training of SSL models:

To train the ssl models for moco, moco-mse and moco-btwins, please use 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' respectively. The code works for first two datasets. For the diabetic retinopathy dataset, please write a dataloader like "chest_xray_supervised.py" and a datamodule file like "chest_xray_dm.py". Import these files in 'train_ssl_moco.py', 'train_ssl_moco_mse.py' and 'train_ssl_moco_btwins.py' and make necesary changes. The same code can work for the diabetic retinopathy dataset.

  1. Fine tuning the models:

To finetune the models, please use the "fine_tune_moco_chestxray.py" and "fine_tune_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for fine tuning using/similar to "fine_tune_moco_chestxray.py"

  1. Probing the models:

To probe the intermediate layers of the model, please use the "probing_moco_chestxray.py" and "probing_moco_hist.py" for NIH chest xray and Breast cancer histopathology data, respectively. For the diabetic retinopathy dataset, please write the code for probing the intermediate layers using/similar to "probing_moco_chestxray.py"

  1. Feature reuse analysis:

To compute the feature similarity, perform the inference using your model, store the intermediate layer representations and use "CKA.py" for computing the kernel similarity with sigma = 0.8.

Owner
Aakash Kaku
Enthusiast of using Deep Learning in Medicine and Machine Learning in Finance and Marketing. Master of Business Administration and Data Sciences
Aakash Kaku
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022