《Truly shift-invariant convolutional neural networks》(2021)

Overview

Truly shift-invariant convolutional neural networks [Paper]

Authors: Anadi Chaman and Ivan Dokmanić

Convolutional neural networks were always assumed to be shift invariant, until recently when it was shown that the classification accuracy of a trained CNN can take a serious hit with merely a 1-pixel shift in input image. One of the primary reasons for this problem is the use of downsampling (popularly known as stride) layers in the networks.

In this work, we present Adaptive Polyphase Sampling (APS), an easy-to-implement non-linear downsampling scheme that completely gets rid of this problem. The resulting CNNs yield 100% consistency in classification performance under shifts without any loss in accuracy. In fact, unlike prior works, the networks exhibit perfect consistency even before training, making it the first approach that makes CNNs truly shift invariant.

This repository contains our code in PyTorch to implement APS.

ImageNet training

To train ResNet-18 model with APS on ImageNet use the following commands (training and evaluation with circular shifts).

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET

For training on multiple GPUs:

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET --workers NUM_WORKERS --dist-url tcp://127.0.0.1:FREE-PORT --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0

--arch is used to specify the architecture. To use ResNet18 with APS layer and blur filter of size j, pass 'resnet18_apsj' as the argument to --arch. List of currently supported network architectures are here.

--circular_data_aug can be used to additionally train the networks with random circular shifts.

Results are saved in OUT_DIR.

CIFAR-10 training

The following commands run our implementation on CIFAR-10 dataset.

cd cifar10_exps
python3 main.py --arch 'resnet18_aps' --filter_size FILTER_SIZE --validate_consistency --seed_num 0 --device_id 0 --model_folder CURRENT_MODEL_DIRECTORY --results_root_path ROOT_DIRECTORY --dataset_path PATH-TO-DATASET

--data_augmentation_flag can be used to additionally train the networks with randomly shifted images. FILTER_SIZE can take the values between 1 to 7. The list of CNN architectures currently supported can be found here.

The results are saved in the path: ROOT_DIRECTORY/CURRENT_MODEL_DIRECTORY/

Owner
Anadi Chaman
Anadi Chaman
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Random Walk Graph Neural Networks

Random Walk Graph Neural Networks This repository is the official implementation of Random Walk Graph Neural Networks. Requirements Code is written in

Giannis Nikolentzos 38 Jan 02, 2023