Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Overview

Topographic Variational Autoencoder

Paper: https://arxiv.org/abs/2109.01394

Getting Started

Install requirements with Anaconda:

conda env create -f environment.yml

Activate the conda environment

conda activate tvae

Install the tvae package

Install the tvae package inside of your conda environment. This allows you to run experiments with the tvae command. At the root of the project directory run (using your environment's pip): pip3 install -e .

If you need help finding your environment's pip, try which python, which should point you to a directory such as .../anaconda3/envs/tvae/bin/ where it will be located.

(Optional) Setup Weights & Biases:

This repository uses Weight & Biases for experiment tracking. By deafult this is set to off. However, if you would like to use this (highly recommended!) functionality, all you have to do is set 'wandb_on': True in the experiment config, and set your account's project and entity names in the tvae/utils/logging.py file.

For more information on making a Weight & Biases account see (creating a weights and biases account) and the associated quickstart guide.

Running an experiment

To rerun the experiment from Figure 3, you can run:

  • tvae --name 'tvae_2d_mnist'

To rerun the experiments from Figure 4, you can run:

  • tvae --name 'tvae_Lpartial_mnist'
  • tvae --name 'tvae_Lpartial_dsprites'

To rerun the experiments from Tables 1, you can run:

  • tvae --name 'tvae_Lhalf_mnist'
  • tvae --name 'tvae_Lshort_mnist'
  • tvae --name 'bubbles_mnist'
  • tvae --name 'tvae_L0_mnist'
  • tvae --name 'nontvae_mnist'

To rerun the experiments from Tables 2, you can run:

  • tvae --name 'tvae_Lhalf_dsprites'
  • tvae --name 'tvae_Lpartial_dsprites'
  • tvae --name 'tvae_Lshort_dsprites'
  • tvae --name 'bubbles_dsprites'
  • tvae --name 'tvae_L0_dsprites'
  • tvae --name 'nontvae_dsprites'

To rerun the generalization experiment described in Section B.4 (resulting in Figures 1 and 6), you can run:

  • tvae --name 'tvae_Lpartial_mnist_generalization'

To rerun the experiments from Figures 22 and 23 (training on complex combined transformations), you can run:

  • tvae --name 'tvae_Lpartial_perspective_mnist'
  • tvae --name 'tvae_Lpartial_rotcolor_mnist'

Basics of the framework

  • All models are built using the TVAE module (see tvae/containers/tvae.py) which requires a z-encoder, a u-encoder, a decoder, and a 'grouper'. The grouper module defines the topographic structure of the latent space through a model (equivalent to W in the paper), and a padder which defines the boundary conditions.
  • All experiments can be found in tvae/experiments/, and begin with the model specification, followed by the experiment config where important values such as L (group_kernel) and K (n_off_diag) can be set.

Model Architecutre Options

  • 'n_caps': int, Number of independnt capsules
  • 'cap_dim': int, Size of each capsule
  • 'n_transforms': int, Length of the total transformation sequence (denoted S in the paper)
  • 'mu_init': int, Initalization value for mu parameter
  • 'n_off_diag': int, determines the spatial extent of the grouping within a single timestep (denoted K in the paper), n_off_diag=1 gives K=3, while n_off_diag=0 gives K=1.
  • 'group_kernel': tuple of int, defines the size of the kernel used by the grouper, exact definition and relationship to W varies for each experiment.

Training Options

  • 'wandb_on': bool, if True, use weights & biases logging
  • 'lr': float, learning rate
  • 'momentum': float, standard momentum used in SGD
  • 'max_epochs': int, total training epochs
  • 'eval_epochs': int, epochs between evaluation on the test (for MNIST)
  • 'batch_size': int, number of samples per batch
  • 'n_is_samples': int, number of importance samples when computing the log-likelihood on MNIST.
  • 'max_transform_len': int, (for dSprites) controls the subset of the dataset

Acknowledgements

The Robert Bosch GmbH is acknowledged for financial support.

Owner
T. Andy Keller
PhD Student at UvA
T. Andy Keller
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago SuΓ‘rez 125 Dec 31, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation

RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., GΓΌney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Certified Patch Robustness via Smoothed Vision Transformers

Certified Patch Robustness via Smoothed Vision Transformers This repository contains the code for replicating the results of our paper: Certified Patc

Madry Lab 35 Dec 14, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022