Data preprocessing rosetta parser for python

Overview

datapreprocessing_rosetta_parser

I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity, specifically targeting popular packages like pandas, beautifulsoup and spacy.

The main idea of my project is to recreate Jelle Teijema's preprocessing pipeline and then try to run Dutch language model on each document to extract things of interest, such as emails, urls, organizations, people and dates. Maybe at this point, it shouldn't be considered just pre-processing, hmmm. Anyway, I've used nl_core_news_lg model. It is not very reliable, especially for organization and person names, however, it still allows for interesting queries.

Moreover, I've decided to try to do a summarization and collection of the most frequent words in the documents. My script tries to find N_SUMMARY_SENTENCES most important sentences and store it in the summary column. Please note, my Dutch is not very strong, so I can't really judge how well it works :)

Finally, the script also saves cleaned title and file contents, as per track anticipated output.

Output file

generate.py reads .csv files from input_data folder and produces output .csv file with | separator. It is pretty heavy (about x1.8 of input csv, ~75MB) and has a total of 15 columns:

Column name Description
filename Original filename provided in the input file
file_content Original file contents provided in the input file
id The dot separated numbers from the filename
category Type of a file
filename_date Date extracted from a filename
parsed_date Date extracted from file contents
found_emails Emails found in the file contents
found_urls URLs found in the file contents
found_organizations Organizations found in the file contents
found_people People found in the file contents
found_dates Dates found in the file contents
summary Summary of the document
top5words Top 5 most frequently used words in the file contents
title Somewhat cleaned title
abstract Somewhat cleaned file contents

Some interesting queries that I could think of at 12pm

  1. Load the output processed .csv file:
import pandas as pd
df = pd.read_csv('./output_data/processed_data.csv', sep='|',
                 index_col=0, dtype=str)
  1. All unique emails found in the documents:
import ast
emails = sum([ast.literal_eval(x) for x in df['found_emails']], [])
unique_emails = set(emails)
  1. Top 10 communicated domains in the documents:
from collections import Counter
domains = [x.split('@')[1] for x in emails]
d_counter = Counter(domains)
print(d_counter.most_common(10))
  1. Top 10 organizations mentioned in the documents:
orgs = sum([ast.literal_eval(x) for x in df['found_organizations']], [])
o_counter = Counter(orgs)
print(o_counter.most_common(10))
  1. Find IDs of documents that contain word "confidential" in them:
df['id'][df['abstract'].str.contains('confidential')]
  1. How many documents and categories there are in the dataset:
print(f'Total number of documents: {len(df)}')
print('Documents by category:')
df['category'].value_counts()

and I am sure you can be significantly more creative with this :)

How to generate output data

  1. Install dependencies with conda and switch to the environment:
conda env create -f environment.yml
conda activate ftm_hackathon

Alternatively (not tested), you can install packages to your current environment manually:

pip install spacy tqdm pandas bs4
  1. Download Dutch spacy model, ~500MB:
python -m spacy download nl_core_news_lg
  1. Put your raw .csv files into input_data folder.

  2. Run generate.py. On my 6yo laptop it takes ~17 minutes.

  3. The result will be written in output_data/processed_data.csv

Owner
ASReview hackathon for Follow the Money
ASReview hackathon for Follow the Money
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext ⚡ 🌍 Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect.

117 Jan 07, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
تولید اسم های رندوم فینگیلیش

karafs کرفس تولید اسم های رندوم فینگیلیش installation ➜ pip install karafs usage دو زبانه ➜ karafs -n 10 توت فرنگی بی ناموس toot farangi-ye bi_namoos

Vaheed NÆINI (9E) 36 Nov 24, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
The official code for “DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction”, ACM MM, Oral Paper, 2021.

Good news! Our new work exhibits state-of-the-art performances on DocUNet benchmark dataset: DocScanner: Robust Document Image Rectification with Prog

Hao Feng 231 Dec 26, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022