[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

Overview

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts.

by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC Berkeley/ICSI and NTU

International Conference on Learning Representations (ICLR), 2021. Spotlight Presentation

Project Page | PDF | Preprint | OpenReview | Slides | Citation

This repository contains an official re-implementation of RIDE from the authors, while also has plans to support other works on long-tailed recognition. Further information please contact Xudong Wang and Long Lian.

Citation

If you find our work inspiring or use our codebase in your research, please consider giving a star and a citation.

@inproceedings{wang2021longtailed,
  title={Long-tailed Recognition by Routing Diverse Distribution-Aware Experts},
  author={Xudong Wang and Long Lian and Zhongqi Miao and Ziwei Liu and Stella Yu},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=D9I3drBz4UC}
}

Supported Methods for Long-tailed Recognition:

  • RIDE
  • Cross-Entropy (CE) Loss
  • Focal Loss
  • LDAM Loss
  • Decouple: cRT (limited support for now)
  • Decouple: tau-normalization (limited support for now)

Updates

[04/2021] Pre-trained models are avaliable in model zoo.

[12/2020] We added an approximate GFLops counter. See usages below. We also refactored the code and fixed a few errors.

[12/2020] We have limited support on cRT and tau-norm in load_stage1 option and t-normalization.py, please look at the code comments for instructions while we are still working on it.

[12/2020] Initial Commit. We re-implemented RIDE in this repo. LDAM/Focal/Cross-Entropy loss is also re-implemented (instruction below).

Table of contents

Requirements

Packages

  • Python >= 3.7, < 3.9
  • PyTorch >= 1.6
  • tqdm (Used in test.py)
  • tensorboard >= 1.14 (for visualization)
  • pandas
  • numpy

Hardware requirements

8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

Dataset Preparation

CIFAR code will download data automatically with the dataloader. We use data the same way as classifier-balancing. For ImageNet-LT and iNaturalist, please prepare data in the data directory. ImageNet-LT can be found at this link. iNaturalist data should be the 2018 version from this repo (Note that it requires you to pay to download now). The annotation can be found at here. Please put them in the same location as below:

data
├── cifar-100-python
│   ├── file.txt~
│   ├── meta
│   ├── test
│   └── train
├── cifar-100-python.tar.gz
├── ImageNet_LT
│   ├── ImageNet_LT_open.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_val.txt
│   ├── test
│   ├── train
│   └── val
└── iNaturalist18
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_val.txt
    └── train_val2018

How to get pretrained checkpoints

We have a model zoo available.

Training and Evaluation Instructions

Imbalanced CIFAR 100/CIFAR100-LT

RIDE Without Distill (Stage 1)
python train.py -c "configs/config_imbalance_cifar100_ride.json" --reduce_dimension 1 --num_experts 3

Note: --reduce_dimension 1 means set reduce dimension to True. The template has an issue with bool arguments so int argument is used here. However, any non-zero value will be equivalent to bool True.

RIDE With Distill (Stage 1)
python train.py -c "configs/config_imbalance_cifar100_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

Distillation is not required but could be performed if you'd like further improvements.

RIDE Expert Assignment Module Training (Stage 2)
python train.py -c "configs/config_imbalance_cifar100_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

Note: different runs will result in different EA modules with different trade-off. Some modules give higher accuracy but require higher FLOps. Although the only difference is not underlying ability to classify but the "easiness to satisfy and stop". You can tune the pos_weight if you think the EA module consumes too much compute power or is using too few expert.

ImageNet-LT

RIDE Without Distill (Stage 1)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_ride.json" --reduce_dimension 1 --num_experts 3
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_ride.json" --reduce_dimension 1 --num_experts 3
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_ride.json" --reduce_dimension 1 --num_experts 3

RIDE With Distill (Stage 1)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

RIDE Expert Assignment Module Training (Stage 2)

ResNet 10
python train.py -c "configs/config_imagenet_lt_resnet10_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3
ResNet 50
python train.py -c "configs/config_imagenet_lt_resnet50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3
ResNeXt 50
python train.py -c "configs/config_imagenet_lt_resnext50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

iNaturalist

RIDE Without Distill (Stage 1)

python train.py -c "configs/config_iNaturalist_resnet50_ride.json" --reduce_dimension 1 --num_experts 3

RIDE With Distill (Stage 1)

python train.py -c "configs/config_iNaturalist_resnet50_distill_ride.json" --reduce_dimension 1 --num_experts 3 --distill_checkpoint path_to_checkpoint

RIDE Expert Assignment Module Training (Stage 2)

python train.py -c "configs/config_iNaturalist_resnet50_ride_ea.json" -r path_to_stage1_checkpoint --reduce_dimension 1 --num_experts 3

Using Other Methods with RIDE

  • Focal Loss: switch the loss to Focal Loss
  • Cross Entropy: switch the loss to Cross Entropy Loss

Test

To test a checkpoint, please put it with the corresponding config file.

python test.py -r path_to_checkpoint

Please see the pytorch template that we use for additional more general usages of this project (e.g. loading from a checkpoint, etc.).

GFLops calculation

We provide an experimental support for approximate GFLops calculation. Please open an issue if you encounter any problem or meet inconsistency in GFLops.

You need to install thop package first. Then, according to your model, run python -m utils.gflops (args) in the project directory.

Examples and explanations

Use python -m utils.gflops to see the documents as well as explanations for this calculator.

ImageNet-LT
python -m utils.gflops ResNeXt50Model 0 --num_experts 3 --reduce_dim True --use_norm False

To change model, switch ResNeXt50Model to the ones used in your config. use_norm comes with LDAM-based methods (including RIDE). reduce_dim is used in default RIDE models. The 0 in the command line indicates the dataset.

All supported datasets:

  • 0: ImageNet-LT
  • 1: iNaturalist
  • 2: Imbalance CIFAR 100
iNaturalist
python -m utils.gflops ResNet50Model 1 --num_experts 3 --reduce_dim True --use_norm True
Imbalance CIFAR 100
python -m utils.gflops ResNet32Model 2 --num_experts 3 --reduce_dim True --use_norm True
Special circumstances: calculate the approximate GFLops in models with expert assignment module

We provide a ea_percentage for specifying the percentage of data that pass each expert. Note that you need to switch to the EA model as well since you actually use EA model instead of the original model in training and inference.

An example:

python -m utils.gflops ResNet32EAModel 2 --num_experts 3 --reduce_dim True --use_norm True --ea_percentage 40.99,9.47,49.54

FAQ

See FAQ.

How to get support from us?

If you have any general questions, feel free to email us at longlian at berkeley.edu and xdwang at eecs.berkeley.edu. If you have code or implementation-related questions, please feel free to send emails to us or open an issue in this codebase (We recommend that you open an issue in this codebase, because your questions may help others).

Pytorch template

This is a project based on this pytorch template. The readme of the template explains its functionality, although we try to list most frequently used ones in this readme.

License

This project is licensed under the MIT License. See LICENSE for more details. The parts described below follow their original license.

Acknowledgements

This is a project based on this pytorch template. The pytorch template is inspired by the project Tensorflow-Project-Template by Mahmoud Gemy

The ResNet and ResNeXt in fb_resnets are based on from Classifier-Balancing/Decouple. The ResNet in ldam_drw_resnets/LDAM loss/CIFAR-LT are based on LDAM-DRW. KD implementation takes references from CRD/RepDistiller.

Owner
Xudong (Frank) Wang
Ph.D. Student @ EECS, UC Berkeley; Graduate Student Researcher @ International Computer Science Institute, Berkeley, USA
Xudong (Frank) Wang
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022